ED 054703	48 FL 002628
AUTHOR	Price, James D.
TItLe	A Computerized Phrase-Structure Grammar (Modern
	Hebrew): Part II, A Complex-constituent
	Phrase-structure Grammar of Modern Hebrew Syntax.
	Final Report.
INSTITUTION	Franklin Inst. Research Labs.. Philadelphia, Pa=
SPONS AGENCY	office of Education (DHEW), Washington, D.C. Bureau
	of Research.
bureau no	BR-9-7722
PUB DATE	Jun 71
contract	OEC-0-9-097722-4411
NOTE	295 p .
EDRS PRICE	MF-\$0.65 HC-\$9.87
DESCRIPTORS	Algorithms; *Computational Linguistics; *Computer
	Programs: Deep Structure; *Grammar; *Hebrew;
	Instructional Materials; Language Patterns; Languag
	Research: Language Universals; Morphology
	(Languages) : Phrase Structure; Semitic Languages;
	Sentence Structure; Syntax; Tables (Data) ${ }^{\text {a }}$ Teacher
	Education; Transformation Generative Grammar;
	*Transformation Theory (Language)

[^0]FINAL REPORT

Project No. 097722
Contract No. OEC-0-9-097722-4411
Franklin Institute Report No, F-C2585-2

A COMPUTERIZED PHRASE-STRUCTURE GRAMMAR (MODERN HEBREW)

PART II U.S. DEPARTMENT OF HEALTH, EDUCATION \& WELFARE OFFICE OF EDUCATIOK

THIS DOCUMENT HAS BEEN REPRODUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGAMIZATION ORIGINATIHG IT. POIMTS OF VIEW OR OPIMIOHS STATED DO NOT HECESSARIL REPRESENT OFFICIAL OFFICE OF EDUCATIOH POSIIIOA OR POLICY.

James D. Price
Franklin Institute Research Laboratories 20th and Race Streets
Philadelphia, Fenn. 19103

$$
\begin{aligned}
& \text { UU S S DEEARTMENTAF } \\
& \text { HEALTH EDUCATION, AND NELFARE } \\
& \text { VOffice of Educacton } \\
& \text { Ins th tute of internationam studtes }
\end{aligned}
$$

FINAL REPORT
Project No. 097722
Contract No. 0EC-0-9-097722-4411
Franklin Institute Report No. F-C2585-2

A COMPUTERIZED PHRASE-STRUCTURE GRAMMAR (MODERN HEBREW)

PART II

A Complex-Constituent Phrase-Structure
Grammar of Modern Hebrew Syntax

James D. Price
Franklin Institute Research Laboratories Philadelphia, Penn. 19103

June 1971

The research reported herein was performed pursuant to a contract with the Office of Education, U.S. Department of Health, Education, Welfare.
U.S. DEPARTMENT OF

HEALTH, EDUCATION, AND WELFARE
Office of Education
2
Institute of International Studies

ABSTRACT

This is the second part of a four-part report of research for the development of a computerized phrase-structure grammar of modern Hebrew. This part describes the application of a generalized complexconstituent phrase-structure grammar (defined in Part I) to a specific Semitic language (modern Hebrew). The grammar consists of one initial symbol, 73 intermediate symbols, one variable symbol, and 20 terminal symbols, a set of 29 subscripts on the symbols, and a set of 76 replacemont rules (with a total of 179 optional: variations). Each element of the grammar is defined in detail and illustrated with examples.

The rules of the grammar were tested by means of a computerized algorithm for generating sentences in Hebrew (described in Part I TI) and by means of a computerized algorithm for analyzing sentences in i brew (described in Part IV). These tests uncovered numerous deficiencies in the rules of the grammar most of which were corrected in this present version. Of the 179 optional variations of the rules, 111 were tested. Since it was not possible to test all the rules in the scope of the present project, it is likely that additional deficiencies will be found. The tests demonstrate that this specific set of rules is essentially correct but that there is need for further research in certain areas outlined in the text. The tests also demonstrate that the generalized grammar is suited for mechanization on a computer and that it is adequate for defining the syntax and orthography of Hebrew. The results of this research give good reason to believe that the generalized grammar can be successfully applied to other Semitic languages such as Arabic.

ACKNOWL.EDGMENTS

Grateful acknowledgment is given to Prof. Esra Shereshevaky, Chairman of the Department of Hebrew and Near Eastern Languages and Literatures, Temple University, who served as consultant on this project. He was very helpful in clarifying many details of the rules of byntax and orthography. In addition, he carefully read the manuscript of this part of the report and pointed out numerous shortcomings and errors.

Acknowledgment also is given to the Dropsie University, which provided, under subcontract, the clasaification of Hebrew words contained in Appendix A and described in Section 2.4 of this part. The work was performed by Mr. Ezra Cohen under the supervision of Dr. Federico Corriente, Professor of Semitic Linguistics. Mr. Cohen also made numerous helpful suggestions about the classification of words and about the rules of grammar.

TABLE OF CONTENTS

Page
ABSTRACT i
ACKNOWLEDGMENTS ii
PART II. A COMPLEX-CONSTITUENT PHRASE-STRUCTURE GRAMMAR OF MODERN HEBREW SYYTAX 2-1
2.1 Introductory Considerations 2-1
2.1.1 Limitations of Grammar 2-1
2.1.2 Input to the Grammar 2-2
2.1.3 Output of the Grammar 2-3
2.2 The Formalized Grammar of Hebrew Syntax 2-4
2.2.1 Symbol Subscripts (Δ) 2-4
2.2.2 The Symbols 2-10
2.2.3 Replacemenc Rules (Ω)
2.2.3 Replacemenc Rules (Ω) 2-43 2-43
2.3 Examples and Illustrations 2-129
2.3.1 Tree Diagrams of Computer Generated Sentences 2-129
2.3.2 Tree Diagrams of Computer Analyzed Sentences 2-177
2.4 Classification of Hebrew Word 2-204
2.4.1 Root 2-204
2.4.2 Syntactic Function (A) 2-204
2.4.3 Function Class (C) 2-205
2.4.4 Syntactic Gerder (G) 2-205
2.4.5 Preopositional Class (R) 2-206
2.4.6 Voice (V) 2-206
2.4.7 Inflection Class (U) 2-206
2.4.8 Stem (S) 2-206
2.4.9 Stem Class (F) 2-210
2.4.10 Number-Gender Transform (X) 2-210 2-210
2.4.11 Feminine Singular Class (H) 2-210
2.4.12 Historic Period 2-210
2.4.13 English Meaning 2-213
2.5 Conciusions 2-213
APPENTIX A - HEBREW-ENGLISH DICTIONARY

LIST OF TABLES

LIST OF FIGGURES

Fig. No.
Page
2.1 Structure of Preposition-Pronoun Phrase 2-53
2.2 Structure of Adjective Phrase (A_{pa}) 2-56
2.3 Structure of $A_{\text {pa }}$ class 2.................2-57
2.4 Structure of $A_{\text {pa }}$ class 1................. 2-58

PART II

A COMPLEX-CONSTITUENT PHRASE-STRUCTURE GRAMMAR OF MODERN HEBREW SYNTAXI

This part of the report describes a complex-constituent phrasestructure grammar of modern Hebrew syntax, a grammar essentialily complete in that it describes the basic structure of the syntax of modern Hebrew sentences, but incomplete in some finer details that can be included later by adding more rules to this foundation. The grammar provides new material for training teachers of Hebrew consisting of a transformationaltype theoretical model of modern Hebrew that views the language as an integrated whole. A study of the language from this point of view will enable teachers of Hebrew to acquire a better understanding of the deep atructures of the language and of the associated processes than has been available to them in the past. However, the material is organized as a formal presentation of the grammar, which is not necessarily the best form for training teachers.

The first section coritains introductory material. The second section presents a formal and detalled description of the grammar. The third section contains tree diagrams of sentences generated or analyzed by means of a computer, making use of the computerized version of this grammar. The sentences serve as examples and illustrations of the rules of the grammar as noted throughout the text.

2.1 Introductory Considerations

This section provides introductory material that defines the limitations, input and output requirements of the grammar.

2.1.1 Limitations of Grammar

The grammar in its present form is limited to the syntax of sentences. It is recognized that there are structural relationships

[^1]between sentences ${ }^{2}$ that determine auch things as the use of the articie ${ }^{3}$, the inflection of pronouns, the use of damonstrative pronouns, the use of qualifiezs auch as $a Z 2$, Bome, and so forth. Rules for these inter-seltence relationships may be written at a later time, since the grammar incorporates this capability.

The grammar contains phrase-structure ruiea of the deep structure ${ }^{4}$ of the langurage, and phrasemstructure fules for generating surface structures. The aubscripts of the complex constituents provide the capability of performing operationa similaz to Chomsky's tranzformations. Sowe constituencs could have bren derfved from "kernel sentences", but rules were not written for such derivation. These rules were not written for two reasons: (1) because they woild not gerve the purposss of the present research, or (2) further atudy is required. In these cases, the rules of the grammar define a relationship between constituents that asmumes buch an underlying derivation. Often the text associated with the rule discusses assumed derivations.

Finally, the grammar does not treat man cemmon syntactic fidioms, ${ }^{5}$ one important exception being the fidiom of possession. Rules for syntactic idioms may be written at a later time.

Because of these Iimitations, the grammar will generate only a subset of the possible sentences in Hebrew. However, with the capability of multiple branching, self imbedding, and unlimited compounding, the gramar will generate an infinite variety of sentences within the framework of thia aubset of modern hebrew.

2.1.2 Input to the Grammar

The input to the grammar used in its generative mode is the equivalent of the output of an Engliah-to-Hebrew transfer grammar. This

[^2]transfer grammar supplies the Hebrew dictionary equivalent of the English semantic units, and answers questions about the deep structure of the sentence to be generated, such as
(1) is the sentence a declaration, question, command?
(2) are there dependent circumstances?
(3) is the voice ${ }^{6}$ active, passive, reflexive, and so forth?

These deep structure decisions seem to be related to the structure of language in general and not confined to the syntax of Hebrew in particular. Therefore, it is proper to assign these decisions to the transfer grammar rather than to the syntax grammar. For this reason, an educated human acquainted with grammar, but not necessarily knowing Hebrew, may serve as manual input for the syntax grammar in place of a non-existent computerized English-to-Hebrew transfer grammar.

The input to the grammar, used in its analytic mode, is the equivalent of the output of an analysis grammar of Hebrew orthography. For each input constituent it defines syntax category, class, number, gender, person, mood, tense, etc. Such a grammar exists ${ }^{7}$ and ultimately will be used to supply input data. However, at this stage these data are supplied manually.
2.1.3 Output of the Grammar

The output of the syntax grammar used in its generative mode is a sequence of teminal symbols with computed values for their complex descriptors. These symbols serve as input for the grammar of orthography, the output of which is a sequence of inflected words in the correct orthography and syntactic order of modern Hebrew. In addition a tree diagram is produced that defines the complete syntactic structure of the generated sentence. See Section 2.3.1 for samples of the output of the generative mode. The sample sentences are referred to throughout the text to illustrate the rules of the grammar. Since each sentence illustrates the operation of many different rules, the sample sentences are placed in one section rather than scattered throughout the text.
${ }^{6}$ In the case of volce, the correct stem of the verb must be selected from the dictionary which also supplies verb type and other syntactic descriptors. Thus a transitive verb may be class. 3 in the active voice, Class 4 in the passive voice, and class 2 in the reflexive voice. See Section 2.2.2.4.18 for description of verb class.
${ }^{7}$ See J. Price's dissertation, Appendix II, and his "An Algorithm for Analyzing Hebrew Words", Computer Studies in the Humanities and Verbal Behavior, Yol. II, No. 3, October, 1969.

The output of the grammar used in ita analytic mode is a list of analytic statements about the sentence, together with a tree diagram of the computed syntactic structure of the sentence. See Section 2.3.2 for samples of the output of the analytic mode.

The Hebrew sentences are written in transliterated English characters. The transliteration is different than the one commonly used in order to provide a set of characters for use on a computer that has an unambiguous one-to-one correspondence with the Hebrew characters. Table $2-1$ contalns the transliteration.

2.2 The Formalized Grammar of Hebriew Syntax

The complex-constituent phrase-atructure grammar of modern Hebrew syntax consists of a set of subscripts (Δ), a set of variable symbols (Γ), a set of initial symbols (Φ), a set of intermediate symbols (X), a set $\cap f$ terminal symbols (T), and a set of unordered replacement rules (Ω).

There are 21 subscripts ${ }^{8}$, one variable symbol, one initial symbol, 73 intermediate symbols, 20 terminal symbols, and approximately 179 replacement rules ${ }^{9}$. The following sections define, describe, and illustrate these constituents of the grammar in detail.
2.2.1 Symbol Subscripts (Δ)

The constituent elements of the grammar are defined as complex because they have up to twenty-one independent grammatical attributes. ${ }^{8}$ These attributes are expressed by a set of gubscripts (Δ) on the symbols of the grammar. The subscripts are written below the line and enclosed in parentheses. Example:
${ }^{F}$ (mflebclydngpravitswjhx)
The subscripts provide the grammar with the capability of performing operations similar to Chomsky's transformations. Subscript c (symbol class) provides for selecting alternate forms of a symbol that, in some cases, imply different deep structure derivations. These implied derivations are discussed in the text at the appropriate places.

[^3]Table 2-1
THE TRANSLITERATION

The set of subscripts and the associated attribute is as follows:

```
\Delta ~ : ~ m - o p t i o n a l / m a n d a t o r y ~
    f--compounding pattern
    k--number of times compounded
    b--connective type
    c--symbol class
    \ell--negative class
    y--negative/positive
    d--indefinite/definite
    n--number
    g--gender
    p--person
    r--prepositional modifier class
    a--verb modifier class
    v--voice
    f--mood
    t--tense
    s--stem class
    w--root
    j--state
    h--fem. noun class
    x--number gender transform
```

The subscript for a given attribute always occupies the same position within the parentheses.

The attributes of a constituent element may be one of the following types:
(1) nonoperative
(2) fixed
(3) a dependent variabie
(4) an independent variable

If an attribute of a given constituent is nonoperative, the associated subscript of the symbol is zero. If the attribute is fixed, the associated subscript is a numeral (or in case of subscript w, transiiterated Hebrew letters). If the attribute is a dependent variabze, the associated subscript is a lower case alphabetic. If the attribute is an independent variable, the associated subscript is 9. For example, in the symbol

$$
\left.F_{(109 c}\right)
$$

the first attribute m has a fixed value of 1 ; the second attribute f is nonoperative; the third attribute k is an independent variable to which any valid value may be assigned; the fourth attribute c is a dependent variable, the value of which is dependent on another symbol.

Attributes that are fixed or nonoperative are not changed by operations of the grammar. Attributes that are independent variables must have values assigned to them from a source external to the grammar (i. e., by input specifications). Attributes that are dependent variables have computed values assigned to them by the grammar. The use of dependent variabzes gives the grammar context-sensitive capability for governing the concord of redundant semantic information distributed throughout a phrase.

The fixed values of the subscripts are associated with the grammatical attributes as follows:

Subscript	Value	Attribute
m:	$\mathrm{O}=$	the symbol is omitted
	$1=$	the symbol is mandatory
	$9=$	the symbol is optional
f:	$0=$	no compounding permitted
	1=	compounding pattern 1 required
	2=	compounding pattern 2 required
	etc.	
k:	$0=$	symbol appears once
	$2=$	symbol repeated twice in given
	etc.	

2.2.2. The Symbols

The gramnar has four sets of symbols
$T: \quad$ variable symbols
$\Phi:$ initial symbols
$X:$ intermediate symbols
$T:$ terminal symbols

2.2.2.1 Variable Symbols (r)

The grammar has one variable symbol, F, that represents any other symbol in the grammar. T.t is used for writing rules that cover a wide range of symbols, such as rules of negation, rules of compounding, etc. One rule on F replaces many redundant rules on other symbols. Specific uses of F are given in the section on rules.

2.2.2.2 Initial Symbols (Φ)

In the construction of a sentence, the grammar begins with one of the set of initial symbols. Initial symbols have attributes that are fixed or independent variables only, and they appear only on the right hand side in replacement rules. The Hebrew Grammar has only one inํ.tial symbol (s_{c}) which siands for a completed sentence. The symbol has three classes:

Class 1: completed declarative sentence
Class 2: completed interrogative sentence
Class 3: completed imperative sentence
A11 sentences are defined under one of these three classes in the section on rules.

2.2.2.3 Intermediate Symbols (x)

Intermediate symbols are used'by the grammar during the construction of a sentence. The Hebrew grammar has 73 intermediate symbols (Table 2.2). Specific definitions of the symbols are given in the rection on rules. The names of the symbols do not always refiect the identity of the distinctive linguistic feature associated with the symbol. Likewise, the rules of the gramar do not always clearly identify the value of the feature associated with the various options of the rule. More work is required to clarify some of these details.

> Table 2.2
> LIST OF INTERMEDIATE SYMBOLS $: x)$

$A_{\text {pa }}$
A_{s}
${ }^{B}$ a
$\mathbf{B a a}_{\text {a }}$
${ }^{B}{ }_{a b}$
$B_{a c}$
B_{ad}
B
${ }^{\mathbf{B}}$ af
$\mathrm{B}_{\mathbf{b a}}$
\mathbf{B}_{bb}
B_{bc}
${ }^{12} \mathrm{c}$
$\mathbf{B}_{\mathbf{p}}$
D_{p}
$D_{\text {pd }}$
$\mathbf{E}_{\mathbf{a}}$
$\mathbf{E}_{\mathbf{p}}$

14

No. of Classes

1
3

2

2

3
1

3

2

3
3

5

2

2
2

2

5
2

1

1

Description
Post-Nominal Adjective Phrase
Basic Post-Nominal Adjective Phrase
Adjectival Possessive Phrase
1-999 Number Phrase
Units Number Phrase
Tens Number Phrase
Teens Number Phrase
Multi-tens Number Phrase
Hundreds Number Phrase
Thousands Number Phrase
1-99 Number Phrase
100-999 Number Phrase
1000-9999 Number Phrase
Definite Number Phrase
1-9999 Number Phrase
Adverb Phrase
Copulative Adverb Phrase
Basic Participle Phrase
Participle Phrase

$$
2-11
$$

17

Table 2.2 -- Continued

Symbo 1
$E_{p a}$
E_{pb}
K_{c}
K_{d}
K_{1}
K_{k}
K_{n}
N_{a}
${ }^{\mathrm{N}}$ ap
$\mathrm{N}_{\mathbf{1 p}}$
N_{0}
N_{op}
N_{p}
N_{pa}
$\mathbf{N}_{\mathbf{p b}}$
N_{pc}
$\mathbf{N}_{\mathbf{p x}}$
N_{8}
N_{BP}
N_{v}
$\mathrm{N}_{\mathbf{w}}$

p
sp N_{w}

No. of Classes

Description
Absolute/Construct Participle Phrase
Construct Participle Phrase
Circumstantial Dependent Clause
Discourse Clause
Interrogative Clause
Conditional Clause
Subject-Object Dependent Clause
Basic Noun Phrase
Appositional Phrase
Indirect Phrase
Direct Object Phrase
Object Phrase
General Noun Phrase
Regular Noun Phrase
Simple Noun Phrase
Appositional Noun Phrase
Copulative Phrase
Fossessive-Pronoun Noun Phrase
Subject Phrase
Infinitive Construct Phrase
Infinitive Absolute Phrase

Table 2.2 -- Continued

Symbo 1
R_{d}
R_{g}
R_{0}
R_{sp}
S
S_{a}
S_{a}
$S_{a b}$
Sac
S_{c}
s_{d}
S_{i}
$S_{q 0}$
so
$\mathbf{S}_{r i}$
∇_{a}
$\nabla_{a a}$
v_{b}
V_{bb}
V_{c}
V_{m}
V_{ma}
$V_{\text {mb }}$

No. of Classes

3
3

1

2
3
3
4
6
1

3

2
3
2
2
2
1
1
1
1
3
8
3
3

Description
Basic Demonstrative Pronoun Phrase
Relative Pronoun Clause
Direct Object Pronoun Phrase
Subject Pronoun Phrase
Basic Sentence
Independent Clause
Possessive Independent Clause
Definite Independent Clause
Indefinite Independent Clause
Completed Sentence
Dependent Clause Sentence
Interrogative Sentence
Objective Interrogative Phrase Objective Relative Phrase

Indirect Relative Phrase
Verb Phrase
Seven-Tense Verb Phrase
Verb-Mood Phrase
Three-Tense Verb Phrase
Emphatic Verb Phrase
Verb Modifying Phrase
Direct Object Verb Modifying Phrase
Indirect Object Verb Modifying Phrase

Table 2.2 -- Continued

Symbo 1	No. of Classes	Description
$V_{m c}$	4	Discourse Verb Modifying Phrase
$\mathbf{v}_{\text {md }}$	3	Double Accusative Verb Modifying Phrase
v_{mi}	3	Verb Modifying Phrase (Ind. Rel. Clause)
$\mathrm{V}_{\text {m }}$	5	Verb Modifying Phrase (Obj. Rel. Clause)
$\mathbf{V}_{\mathbf{p}}$	1	Verb Phrase
\mathbf{v}_{qo}	1	Objective Interrogative Verb Phrase
$\mathrm{v}_{\mathbf{r b}}$	1	Verb Phrase (Obj. Rel. Clause)
$V_{\text {ri }}$	1	Verb Phrase (Ind. Rel. Clause)
X_{p}	3	Prepositional Phrase
z	1	Prepositional Pronoun Phrase

2.2.2.4 Terminal Symbols (T)

The terminal symbols of the grammar are those for which there are no replacement rules. The final product of the grammar is a set. of terminal symbols arranged in sequence as a sentence. The terminal symbols represent the words of a sentence with all their grammatical attributes defined. The Hebrew Grammar has 20 terminal symbols ${ }^{10}$ (Table 2.3). Specific definitions of the terminal symbols for the Hebrew Grammar symbols are given in the sections that follow.

The terminal symbols become the input data for the grammar of Hebrew orthography. Combined together in their generative mode the two grammars produce sentences in modern Hebrew in their correct inflected orthography.
$10_{\text {Present evidence indicates that this number can be reduced to 16. By }}$ the proper use of subscript \dot{J} in the rules, a separate symbol for the construct state of nouns, numbers, participles, and infinitives is not needed.

Table 2.3

LIST OF TERMINAL SYMBOLS (T)

No. of

Symbols

A	1
B	6
C	8
D	6
E	8
B.	8
W	1
I	6
J	1
L	5
N	3
O	1
P	13
Q	2
R	5
T	8
U	7
V	8
W	8
Y	8

Description

Adjective Number Absolute Conjunctive Adverb Participle Absolute Participle Construct Definite Article
Number Construct
Noun Construct Negative Noun Absolute Object Particle Preposition Interrogative Pronoun Punctuation Mark Particle Verb Infinitive Absolute Infinitive Construct

2.2.2.4.1 Adjectives (A)

Adjectives are usually defined as words that modify nouns; but more specifically they are words that are found in the following syntactic constructions:
(a) $\mathrm{N}+\mathrm{A}$
(b) $\mathrm{N}+\mathrm{HYH}(\mathrm{i} s)+\mathrm{A}$

An adjective is the name of a value on the scale of some semantic dimension of the noun which it modifies. For example, the phrase a small boy implies that boys have the semantic dimension size, and it states that the boy in question is characterized by the value "small" on the scale. The scale may be illustrated as follows:

Semantic Dimension "Size"
Value names (adjectives) usually come in pairs, a value and its symmetric opposite.

Example: little -- big
sma11 --- large

The negative of a value usually implies its symmetric opposite:
Example: not little \Rightarrow big

$$
\begin{array}{ll}
\text { not small } & \rightarrow \text { large } \\
\text { not big } & \rightarrow \text { little } \\
\text { not large } & \rightarrow \text { small }
\end{array}
$$

Adjectives have attributes $m, f, k, b, c, l, y, d, n, g, j$, h, and x. The attributes d, n, and g (definiteness, number, and gender) are dependent variables that are governed by the noun which it modifies. They may be compounded; negation is with LWA.

$$
\begin{array}{ll}
\text { Example: } \quad & \text { @WB--good } \\
& \text { YPH--nice } \\
\text { GDWL--big }
\end{array}
$$

Adjectives are found in the construct state, however, the syntax" of adjectives construct is not included in the grammar at this time. Numbers are treated as a separate symbol. Adjectives presently are in one class. Future research may define syntactic classes among the adjectives similar to those found in other languages.

In general, the classification and order of Hebrew adjectives is approximately the same as in English. Those adjectives that appear closest to the noun in English also appear closest to the noun in Hebrew, so that adjectives that come firgt in Engliah come last in Hebrew. 11

2.2.2.4.2 Numbers Absolute (B)

Numbers do not take the same ayntactic constructions as adjectives. They are inflected very similar to nouns and the construct number (I) is syntactically equivalent to a construct noun (J). However, numbers exhibit some unique differences from nouns and are thus treated as a different symbol in the grammar. Numbers appear in the following syntactic constructions:
(a) $\mathrm{B}+(\mathrm{N})$
(b) $N+B$
where B may be a number phrase. 12 Numbers have the attributes m, c, n, g, and j; they are different from nouns in that they are not compounded and are not negated exceft in special cases. The attribute n (number) is usually fixed and the attribute g (gender) is usually a dependent variable under control of an associated noun. However, the syntactic gender of a number is sometimes opposite to that of its inflectional form.

There are six classes of numbers:
-Class 1: one--(AXD/AXT)
-Class 2: two--(SNYYM/STYYM)
-Class 3: three through nine
-Class 4: ten
-Class 5: hundred
-Class 6: thousand
Al1 numbers from 1 to 9,999 are formed by combining these numbers. Higher numbers pose no problem, but were not included at this time.

The numbers one and two form unique constructions and follow a separate rule governing gender. The number ten is unique in that its singular form means 10 and its plural means 20.
${ }^{1}{ }^{1}$ Hailm B. Rosen, A Teatbook of I Press, Chicago (1969), p. 48 .

12 The term "phrase" is used throughout the text to mean a group of one or more words that serve a unique syntactic function.

The numbers three through nine form a unique class in that their masculine plural inflection means the appropriate multiple of ten, 1. e., the plural of eight means eighty.

The numbers 100 and 1000, together with all their multiples, are ambiguous in the gender attribute, as are all multiples of 10.

Numbers absolute are used to quantitate indeierminate objects, that is, they are used to specify the number of members of a class not previously defined. Numbers construct are used to quantitate determinate objects.

Examples: ARBOH YLDYM--- four boys (absolute) ARBOT HYLDYM-- the four boys (construct)

2.2.2.4.3 Conjunctives (C)

The conjunctives comprise a set of constituent elements that perform one of two syntactic functions:
(a) connect two elements of the same type in the syntactic construction

$$
F+C+F
$$

(b) precede particular elements in the syntactic construction

$$
C+F
$$

The members of the set of conjunctive elements are determined on the basis of their common syntactic constructions and artributes, not according to classical grammatical classification. there are eight classes of conjunctives:

```
-Class 1: W--and
-Class 2: AW--or
-Class 3: KY--that (Classical Hebrew only)
-Class 4: KASR--when; @RM--before; OD--until; AXRY--after;etc.
-class 5: LMON--in order that
-Class 6: YON--because; OQB--because (Classical Hebrew only)
-Class 7: LAMWR--saying
-Class 8: ABL--but; ALA--but; LKN--therefore
```

Conjunctives are never compounded and Classes 1, 2 and 8 are never negated. The other classes are negated with LWA. The results of the present research indicate that more work is required to more accurately classify the conjunctives.

2.2.2.4.4. Adverbs (D)

Adverbs usually are defined as words that modify verbs, adjectives, or other adverbs. The definition is inadequate for this grammar, consequently, Hebrew adverbs are divided into classes that are defined in
accordance with their syntactic function. Adverbs are found in the following syntactic constructions:
(a) $\mathrm{D}+\mathrm{V}$
(b) $\mathrm{V}+\mathrm{D}$
(c) $\mathrm{A}+\mathrm{D}$
(d) $D+D$
(e) $\mathrm{N}_{\mathrm{p}}+\mathrm{D}$

Adverbs have the attributes m, a, l_{3}, and y. The terminal symbol D may not be compounded, however, adverb phrases may be. Negation is by Class 1 Negative (LWA). There are six classes of adverbs:

Class 1: Temporal adverbs. These words are names of values on the scale of the semantic dimension time; they answer the question-When? and they modify only verbs or equivalent. The following is a list of some temporal adverbs:

ATMWL ----	yeeterday
HYWM -----	today
HORB -----	tonight
KBR ------	already
MXR -------	tomorrow
MXRTYYM --	the day after tomorrow
MYYD ----	inmediately
MQWDM ----	first
OKSW -----	now
OTH ------	now
POM ------	once (indefinite, does not mean at a single time)
TMYD -----	always

Class 2: Locative Adverbs. These words are names of values on the scale of the semantic dimension place; they answer the question -- Where? and they modify only verbs and nouns or equivalent. The following is a list of some locative adverbs:
HNH --- here (indicating direction)
KAN - heve (indicating position)
MYMYN - at the right
MSMAL -- at the Zeft
PM - here (indicating position)
SM -- there (indicating position)

Class 3: Qualitative adverbs. These words are names of values on various scales of semantic dimensions that define quality or manner of action; they

Class 3: answer the question -- how? -- and they modify (cont'd) only verbs or equivalent. They may be modified by class 4 adverbs. The following is a list of some qualitative adverbs:

$$
\begin{aligned}
& \text { AMNM ---- truly } \\
& \text { BAMT --- truly, realzy } \\
& \text { BWWDAY -- certainly, surely } \\
& \text { XYNM --- freely, vainly } \\
& \text { YXD --- together } \\
& \text { PTOWM -- suddenZy } \\
& \text { TKWPWT -- frequentzy }
\end{aligned}
$$

Class 4: Intensity adverbs. These words are names of values on the scale of the semantic dimension intensity; they answer the question -- to what degree of intensity? -- and they modify adjectives, Class 3 adverbs, and verbs or equivalent. The The following is a list of some intensity adverbs:

```
BYWTR -- exceedingly
DY ----- rather (as rather freely)
YWTR --- moxe
MAWD --- very
PXWT =-- Zess
```

Class 5: Pluperfect adverb MS ${ }^{13}$ that transforms a past tense verb into the pluperfect tense in Classicai Hebrew.

Class 6: Future perfect adverb LKS ${ }^{13}$ that transforms a future tense verb into the future perfect tense in Classical Hebrew.

2.2.2.4.5. Participles Absolute (E)

The participle absolute is a special grammatical inflection of Hebrew verbs that may serve in two syntactical constructions:
(a) It may take the place of a noun in which case it denotes the doer of the verbal action of its root. In this corstruction it may take direct and indirect objects like its corresponding verb.

[^4](b) It may take the place of a verb in present tense constructions.

Participles have attributes $m, f, k, b, c, \ell, y, d, n, g, p$, r, a, v, j, h and x. When serving as a noun, the attribute of definiteness (d) is operative; it is negated by a Class 1 negative (LWA), and it may be in the construct state. When serving as a verb, the attribute of definiteness (d) is non operative and the symbol is negated by a Class 2 negative (AYN).

There are eight classes of participles that are the same as the classes of verbs. Reference is made to the description of verbal symbols for a definition of these eight classes.

2.2.2.4.6 Participles Construct (G) ${ }^{14}$

Participles that serve as nouns may appear in the construct state. Because the participle construct has distinct orthography and distinct syntactic constructions, it is treated as a separate symbol. In all other respects the participle construct is the same as the participle absolute (E). The participle construct is found in the following syntactic constructions:
(a) $\mathrm{G}+\mathrm{N}$
(b) $G+R$

Participles construct have the same attributes and the same classes as participles absolute.

2.2.2.4.7 Definite Article (H)

The definite article is a prefixed word used to specify the attribute of definiteness for the word to which it is attached. The definite article appears in the following syntactic construction:
(a) $\mathrm{H}+\mathrm{N}$
(b) $\mathrm{H}+\mathrm{A}$
(c) $\mathrm{H}+\mathrm{E}$
(d) $\mathrm{H}+\mathrm{B}_{\mathrm{P}}$
(e) $H+R, c=1$
(£) but not $P+H, c<4$
${ }^{14}$ See Section 2.2.2.4, footnote 10.

The definite article has attributes m, c, ℓ, and y. It is not compounded; it carries the negative of the symbol to which it is attached.

There is only one class of the definite article which consists of the one Hebrew prefix word H--the.

Hebrew has no indefinite article. See Section 2.2.3.5.6 for a discussion of undeterminated nouns.

2.2.2.4.8 Numbers Construct (I) ${ }^{15}$

Numbers, like nouns and participles, have a construct state that has distinct orthography and distinct syntactic constructions. In all other respects numbers construct (I) are the same as numbers absolute (B). Numbers construct are found in the following syntactic constructions:

$$
\begin{aligned}
& \mathrm{I}+\mathrm{N} \\
& \mathrm{I}+\mathrm{B}
\end{aligned}
$$

where I is not a number phrase. A construct number is not compounded or negated.

There are six classes of numbers construct that are identical to the classes of numbers absolute (B). Reference is made to the description of numbers absolute for a definition of the classes.

2.2.2.4.9 Nouns Construct (J) ${ }^{16}$

Nouns have a construct state that has distinct orthography and distinct syntactic constructions. In all other respects nouns construct are the same as nouns absolute (N). Nouns construct are found in the following syntactic constructions:
(a) $J+N$
(b) $\mathrm{J}+\mathrm{R}$
(c) $J+J$

There is only one class of nouns construct; it is identical to Class 1 of nouns absolute (N). Reference is made to the description of nouns absolute for a definition of the class. Proper names do not have a construct state.

The construct state of a noun is used to indicate some relationship between the noun and the word immediately following. The relationship can usually be expressed in English by the word of.

15 See Section 2.2.2.4, footnote 10.
16 See Section 2.2.2.4, footnote 10.

2.2.2.4.10 Negatives (L)

The negatives comprise a small set of words used to negate words, phrases, and clauses. They themselves are not negated and are not compounded. They appear in the syntactic construction:

$$
L+F, \ell \notin O, y=1
$$

where F represents any symbol in the grammar that may be negated.
There are four classes of negatives; class is determined by the variable ℓ.
-Class 1: LWA--this is the most widely used negative in Hebrew. It regularly negates most single words (nouns, adjectives, adverbs, etc.). It regularly negates verbal clauses in the indicative mood. It regularly negates noun clauses with pronominal subject (nonpersonal). It is the negative answer to questions of truthfulness, the positive answer to which is KN .
-Class 2: AYN--this word regularly negates noun clauses, being the negative form of YS--there is.

Example: AYN HYLD BBYYT--The boy is not in the house AYN HYLD AWKL---The boy is not eating

When the subject of the clause is a personal pronoun, the pronoun is suifixed to AYN.

Example: AYNW BBYYT--He is not in the house
AYNH AWKLT--She is not eating
AYN is also used to negate present tense verb phrases. In this case a pronoun is suffixed to AYN that agrees with the subject in number, gender, and person.

Example: HYLDYM AYNM AWKLYM--The chiZdren are not eating

AYN also can take the place of the negated present tense copulative, in which case a pronoun is suffixed to AYN that agrees with the subject in number, gender, and person.

Example: HYLDYM AYNM BBYYT--The children are not in the house
-Class 3: LBLTY--that not--this is the regular negative of infinitives construct.
-Class 4: AL--this word regularly negates jussive and subjunctive verbal clauses, and it is used in conditional sentences.

2.2.2.4.11 Nouns Absolute (N)

Nouns unully are defined as names of persons, places and things. In this grammar nouns are defined as the names of classes of objects (either concrete or abstract) and the names of individual members of the classes. They are found in the following syntactic constructions:
(a) $N+A$
(b) $\mathrm{N}+\mathrm{HYH}(1 \mathrm{~s})+\mathrm{A}$
(c) $\mathrm{N}+\mathrm{V}$
(d) $V+N$
(e) $\mathbf{P}+\mathbf{N}$
(f) $0+N$
(g) $J+N$

Nouns have attributes $m, f, k, b, c, l, y, d, n, g, p, j, h, x$. The attributes n, q, and p (number, gender, and person) are usually dependent variables that are governed by the contextual environment of the symbol. For example, when N is the subject of a verb, V, attributes n, g, and p of both symbols must agree; when N is modified by an adjective, A_{s} attribute $d_{,}$ n, and g must agree.

Traditionally, nouns were not recognized to have the attribute of person. However, a rigorous analysis of the Hebrew noun demonstrates its existence. The rule has been that the sabject must agree with the verb in number and gender. However, this rule does not prevent the ungrammatical sentence.

HYLD
AKLT
HTPWX
(the boy ate the apple)
where the subject (HYLD--the boy) agrees with the yerb (AKLT--ate) in number and gender, both being masculine singular. However, the sentence is ungrammatical because the verb is second person. Evidently, agreement between subject and verb is required for the personal attribute. When the subject is a pronoun; the personal attribute has been recognized and agzaement is required with the verb.

Two other facts demonstrate that nouns have the personal attribute. First, pronouns, which have the personal attribute, may replace nouns in a sentence. One would expect a pronoun to agree with the noun to which it refers, in number, gender, and person. Second, nouns are commonly divided into the names of persons, places, and things. The fact that there are personal and nonpersonal nouns implies that nouns have the personal attribute.

There are three classes of nouns: 16
Class 1: nonpersonal nouns--this class consists of a large set of names of nonpersonal "things" both concrete and abstract, not including proper names. Nouns in this class may be collective, definite, or indefinite, when definite they require the definite article. They may be singular or plural, and they usually have a construc declension. They usually are third person.

Class 2: places names--this class consists of the set of names places and countries. Nouns in this class are always definite but never take the definite article. They are usually third person. They do not have a construct declension, and are singular only.

Class 3: personal names--this class consists of the set of prope names of persons. Nouns in this class are always defir but never take the definite article. They may be first second, or third person, depending on the context. The have no construct declension and are always singular.

2.2.2.4.12 Object Particle (0)

The object particle is the Hebrew word $A T$ which is the untr lated sign of the direct definite object. It appears in the following syntactic constructions:
(a) $\mathrm{V}_{\mathrm{p}}+\mathrm{O}+\mathrm{N}_{\mathrm{p}}, \quad \mathrm{d}=2$
(b) $\mathrm{V}_{\mathrm{p}}+\mathrm{O}+\mathrm{R}, \mathrm{d}=2, \mathrm{c}_{\mathrm{r}}=3$

The symbol has the attributes m, c, ℓ, and j. It is not con ed. There is only one class and only one word in the class.

2.2.2.4.13 Prepositions (P)

A preposition is broadly defined as a word that expresses th relationship of its object to some other constituent member of the ser ence. Prepcitions are found in the following syntactic constructions

[^5](a) $P+N_{p}$
(b) $\mathrm{P}+\mathrm{R}$
(c) $\mathrm{V}_{\mathrm{p}}+\mathrm{P}$
(d) but not $P+H, x<4$

Prepositions have attributes m, c, ℓ, y, r, and j and they are not compounded. The attribute r is a dependent variable under control of a governing verb (where one exists), in other constructions it is an independent variable.

In all cases, class is specified by the variable r.
There are thirteen classes 17 of prepositions.

BLY-without
$17_{\text {Further }}$ research in the classification of prepositions as they relate to verbs will result in a more complex descriptor system for prepositins.

2.2.2.4.14 Interrogatives. (Q)

The interrogatives comprise a set of constituents that introduce adverbial interrogative clauses. They are found in the following syntactic construction:

$$
Q+S_{a}
$$

Interrogatives have attributes m and c only; they are not compounded or negated.

There are two classes of interrogatives:
-Class 1: this class consists of the prefixed word, H, which is an untranslated sign of a cuestion. It is used to:introduce adverbial interrogative.clauses.
-Class 2: this class consists of the interrogatives ${ }^{18}$
MTY--when?
AYK--how?
KMH--how much?
LMH--why?
MDWO--why?
etc.

Interrogative pronouns are not included in this set of constituents.

2.2.2.4.15 Pronouns (贝)

Pronouns constitute that set of constituents that take the place of nouns. They are found in the following syntactic constructions: ${ }^{19}$
(a) $\mathrm{R}+\mathrm{HYH}(\mathrm{ns})+\mathrm{A}$
(b) $R_{a}+V$
(c) $V+R_{b}$
${ }^{18}$ Further research is required to correlate the classification of the Interogatives fith their corresponding adverb phrase or equivalent.
${ }^{19}$ A11 listed syntactic constructions may not apply to every pronoun class.
(d) $P+R$
(e) $0+R$
(f) $N+R, \quad \mathrm{c}=\mathrm{l}, 3$

Pronouns have attributes $m, f, k, b, c, \ell, y, d, n, g, p$ and j in general. In certain constructions they may be compounded and they may be negated. There are six classes of pronouns:
-Class 1: demonstrative pronouns. This class is always definite and always third person ($\mathrm{d}=2, \mathrm{p}=3$).
Example: ZH--this(m), ZhT--this (f), ALH--these (m,f)
-Class 2: subject pronouns. This class is limited to nominative case constructions only

Example: ANY--I, AT--You; etc.
-Class 3: suffix pronoms. This class is usually limited to genitive or accusative case only, in constructions (c), (d), (e), and (f) above. These pronouns are suffixed to the word they modify. Suffix pronouns are not compounded or nerated. Example: Y--me, T--you, etc.
-Class 4: relative pronouns. ${ }^{20}$ This class consists of the two words S, and ASR--that/which. For these pronouns, the attributes $d_{,} n, q$, and p are ambiguous; the words are undeclined. ${ }^{21}$
-Class 5: interrogative pronouns. For these pronouns, the attributes d, n, q, and p are ambiguous; the words are undeclined. Example: MY--who?. MH--what?, AYZH--which?, etc.
-Class 6: pronouns of vagueness. For these pronouns the attributes n and g are ambiguous; they are nondeterminate ($\mathrm{d}=0$) and third person ($p=3$).
${ }^{20}$ Relative pronouns introduce relative clauses; it is the relative clause that is found in the above listed syntactic construitions.
${ }^{21}$ Because of this, Y. Hayon classifies these as ReZative Markers. See his "Relative Clauses with Verbal Predicates," Hebrew Computational Linguistios, BuZZetin No. 3, Bar-Ilan University, Ramat-Gan, Israe1, January 1971, p.35.

```
MYSHWA--someone
```

LA-AXD--no one
MSHWA--something
(LA-) KLWM--nothing
Attribute j is zero for Classes $1,2,5$, and 6. Class 4 pronouns (the relative) may govern a Class 3 (pronoun suffix). However, j functions differently for Class 3 pronouns than for any other class of words in the language. For all other words that possess the attribute (nouns, adjectives, numbers, verbs, participles, infinitives, the relative S, prepositions, and YS, AYN, SL, and AWT) it specifies a construct state for the given word when it governs a pronoun suffix; also for some of the words that possess the attribute (nouns, adjectives, numbers, participles, and infinitives) it specifies a construct state for the given word when it governs a noun phrase (or equivalent) in a generative relationship. For the pronoun suffix, however, j governs inflectional variants that the pronoun assumes in varying contextual environments.

2.2.2.4.16 Punctuation Marks (T)

Punctuation marks have attributes m and c only. They are not compounded or negated. Each one has its own unique syntactic structure. There are eight classes, each consisting of one punctuation mark:

```
-Class 1: left quote "
-Class 2: right quote "
-Class 3: comma ,
-Class 4: colon :
-Class 5: question mark ?
-Class 6: period.
-Class 7: exclamation mark !
-Class 8: maqqaph -
```


2.2.2.4.17 Particles (U)

Particles constitute a set of undeclined words each of which is found in its own unique syntactic structure. The classification of a a constituent as a particle is arbitrary as in the case of the conjunctives. since each constituent is independent of the others, it is merely a matter of convenience that they are represented as particles.

Particles have attributes m, c, ℓ, and y; they are not compounded. There are seven classes of particles:
-Class 1: the possessive particle SL.
Example: SLY--mine, SL HADAM--the man's
-Class 2: the subjunctive particle NA, untranslated. It is sometimes appended to a verb to indicate the subjunctive mood. It is not negated.
-Class 3: the copulative particle YS--there is. This word could be defined as a verb. However, Bince it is undeclined, and it is unique in its syntactic structures, it is classified as a particle for convenience. Its negative form is AYN--there is not.
-Class 4: conditional particle, LW--if. This particle is used in past conditional sentences. Its negative form is LWLY--if not, the next particle class.
-Class 5: negative conditional particle, LWLY--if not. This particle is the negative form of Class 4 particle above. The separate form is used since the Class 4 particle does not follow the regular negative construction.
-Class 6: conditional particle, AM--if. This particle is used in future conditional sentences. It follows the regular construction.
-Class 7: locative particle, H. This particle is suffixed to definite nouns of place to indicate the locative sense.

Example: HBYTH--to the house
The word could have been classified as a preposition. But since it is uniquely different from all other prepositions, it is classified as a particle for convenience.

2.2.2.4.18 Verbs (V)

Verbs are broadly defined as words expressing action, state, or being. More specifically they are defined as words that are found in the following syntactic construction:

$$
\mathrm{N}_{\mathrm{sp}}+\mathrm{v}+\mathrm{v}_{\mathrm{m}}
$$

Verbs have attributes $m, f, k, b, c, \ell, y, n, g, p, r, a, v$, i, t, s, w, and j. They do not have the attribute of definiteness (d). Attributes m, f, k, b, y, i, t, s, and w are independent variables that are specified external to the grammar. Attributes c, ℓ, r, a, and v are independent variables specified by the Hebrew dictionary. Attributes n, g, and p are dependent variables governed by the corresponding attributes of N_{sp} in the syntactic construction.

Verbs have only two tense inflection forms: the past tense and future tense. The present tense is expressed by the participle. All other tenses are expressed by the use of auxiliary words with one , ff the three above. For this terminal symbol, only two values of attribute t (tense) are assigned:
$t=1$ (past tense inflection)
$t=2$ (future tense inflection)

There are eight classes of verbs:

-Ciass 1: the Copulative Verb, HYH--to be

This verb is found in the following syntactic constructions:

$$
\begin{aligned}
& N_{s p}+v_{1}+N_{p} \\
& N_{s p}+v_{1}+A_{p}
\end{aligned}
$$

For this class, attribute r is nonoperative ($r=0$)

The copulative (or its equivalent) is used to make the following statements:
(a) N_{1}
(b) $\mathrm{N}_{1}=\mathrm{N}_{2}$
(c) $\mathrm{N}_{1} \subseteq \mathrm{~N}_{2}$
(d) $N_{1} \varepsilon N_{2}$
(e) $A\left(N_{1}\right)=a_{i}$
which are interpreted as follows:
(a) N_{1} exists
(b) N_{1} is identical to N_{2}
(c) N_{1} is a subset of N_{2}
(d) N_{1} is an element of N_{2}
(e) Attribute A of N_{1} is the value a_{1}

These statements are used in defining objects. They constitute an important group of deep structure "kernal" sentences, from which a variety of surface structures are derived.
-Cless 2: Intransitive Verbs
These verbs take no direct object and are found in the following syntactic construction:

$$
N_{s p}+v_{2}
$$

Attribute r is nonoperative $(r=0)$. This class contains the verbs that express state of action or being.

Examples: ${ }^{22}$

$$
\begin{aligned}
& \text { AKL----to eat } \\
& \text { DYBR---to speak } \\
& \text { HXBYR--to grow pale } \\
& \text { XSB---to think } \\
& \text { YSB----to sit, to dwelZ } \\
& \text { YSN---to sZeep } \\
& \text { OMD----to stand } \\
& \text { QBL---to complain } \\
& \text { HAMYN--to believe }
\end{aligned}
$$

2Khroughout the text the Hebrew words are listed in their third person, masculine, singular, past tense inflection, whereas the English equivalent is listed as the infinitive.

This class contains the reflexive transformation of Class 3 transitive verbs.

Examples:

$$
\begin{aligned}
& \text { HTLBS--to dress (oneself) } \\
& \text { HTOKB--to taryy } \\
& \text { HTQDM--to advance (oneself) } \\
& \text { HTRX\&--to take a bath }
\end{aligned}
$$

This transformation has the following derivation:

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{sp}}+\mathrm{V}_{3}+\mathrm{N}_{\mathrm{op}} \\
& \downarrow \quad \downarrow \quad \downarrow \\
& \begin{array}{c}
\mathrm{N}_{\mathrm{Sp}}+\mathrm{v}_{3}+\underset{\downarrow}{ }+\underset{\downarrow}{\text { Self }} \\
\downarrow+
\end{array} \\
& \mathrm{N}_{\mathrm{sp}}+\mathrm{V}_{2} \text { (Refi.) }
\end{aligned}
$$

This class also contains the passive transformation of Class 3 transitive verbs.

Examples:

$$
\begin{aligned}
& \text { DWBR---to be spoken } \\
& \text { HWLBS--to be dressed } \\
& \text { HWPCQ--to be stopped } \\
& \text { NWGN---to be played (of music) } \\
& \text { NLQX---to be taken }
\end{aligned}
$$

This transformation has the following derivation:

In this transformation some of the deep structure information is lost, namely the identity of the original subject (N_{sp}).
-Class 3: Transitive Verbs.
These verbs take a direct object and are found in the following syntactic construction:

$$
N_{s p}+v_{3}+N_{o p}
$$

Attribute r is nonoperative ($r=0$).

Examples:
DYBR---to speak (Zanguage, words, ete.)
HBYN---to woidenstand (something)
HLBYS--to dress (penson, thing)
HPCYQ--to stop (something)
XYYG---to dial (telephone, nuber)
LBS---to wear (clothes), to put on (clothes)
LYWH---to accompany (someone)
LQX----to take (something)
NYGN---to play (musio)
NCH---to try (something)
CYDR---to arrange (something)
OYKB---to hinder (someone), to deZay (something)
QYBL---to accept (things), to receive (things),
to welcome (persons)
STH----to drink (something)

This class aiso contains the causative transformation of intransitive Class 2 verbs.

Examples:
HAKY - -to feed (someone)
HOMYD--to cause (someone) to stand
HWSYB--to cause (someone) to sit

This eransformation has the following derivation:

-Class 4: Indirect Object Verbs.

These verbs require both a direct and an indirect object to complete the sense. They are found in the following syntactic construction:

$$
\begin{aligned}
& \mathbf{N}_{\mathbf{s p}}+\mathrm{V}_{4}+\mathrm{N}_{\mathrm{op}}+\mathrm{N}_{\mathrm{ip}} \\
& \mathbf{N}_{\mathrm{sp}}+\mathrm{V}_{4}+\mathrm{Z}+\mathrm{N}_{\mathrm{op}}
\end{aligned}
$$

Attribute p is operative; it governs attribute p of $N_{i p}$. Examples of verbs governing $N_{1 p}$ with preposition $L\left(r^{m} 1\right)$:

NIN----to give (someone) (something)
SYLM---to pay (someone) (something) CYPR-=-to teZZ (someone) (something). HRAH---to show (someone) (something)

Examples:
HKNYC--to put (something) in (something)
H\&YO---to offer (someone) (something)
HGYD---to tell (someone) (something)
HSYB---to return (someone) (something)
HCBYR--to explain (someone) (something)
HBYA---to bring (someone) (something)
CYPQ---to furnish (someone) (something)
BYSL--to cook (something) for (someone)
Examples of verbs governing $N_{i p}$ with preposition $M N(r=5)$:
BYQS--to ask (something) from (someone) QYBL--to receive (something) from (someone)

Example of verbs governing $N_{i p}$ with preposition $O M(r=8)$: SYXQ--to play (games) with (someone)

This class also includes the causative transformation of Class 5 verbs.
Example:
HGYo (1) L (2)--cause (1) to reach (2)
This transformation has the following derivation:

-Class 5: Prepositional Verbs.

These are transitive verbs that take a direct object with a preposition. The sense of the verb is determined oy the preposition, but the preposition is not always translated ${ }^{23}$ into English. This class is found in the following syntactic structure:

$$
N_{s p}+v_{5}+N_{i p}
$$

Attribute r is operative and governs attribute r of $\mathrm{N}_{\text {ip }}$.
${ }^{23}$ In some cases the preposition must be translated by a different preposition in English; for example: XYYK OL PLWNY-he smiled at someone, where the preposition OL -- on becomes at in English; these should be noted in the dictionary. Note also that a distinction should be made between intransitive verbs (Class 2) that are modified by adverbial prepositional phrases and transitive verbs (Class 5) that govern the object with a preposition. The distinction is that Class 5 Wherbs undergo the passive transformation whereas Class 2 verbs do not.

Examples of verbs governing the direct object with the preposition L ($r=1$):

HTLBS--to dress (oneself) for (occasion)
XYKH---to wait for (something)
@LPN---to telephone (someone)
\&L\&L---to ring (someone) (on the phone)
भAMYN--to believe (something)
Examples of verbs governing the direct object with the preposition $B(r=2):$

HBY@---to Zook at (something)
@YPL---to treat (patient)
SYXQ---to play with (toys)
ZLZL---to belittle (someone)
HSTMS--to use (something)
NYGN---to play (musical instmment)
Examples of verbs governing the direct object with the preposition $M N$ ($r=4,5$):

$$
\begin{aligned}
& \text { AKL---to eat (something) } \\
& \text { PXD---to be afraid of (something) } \\
& \text { YRA--to fear (someone) } \\
& \text { NRTO--to recoil from (something) } \\
& \text { NCWG--to retreat from (something) }
\end{aligned}
$$

Examples of verbs governing the direct object with the preposition AL ($r=6$):

```
HTYYXC--to refer to (something)
XYYK----to smiZe at (someone)
```

Examples of verbs governing the direct object with the preposition (OL ($r=7$):
XSB----to think about (some:thing)
HTGBR--to overcome (someone)
HCPYO--to influence (someone)
DYBR--to talk aboul (sonething)
HTOKB--to duelZ (enlarge) upon (something)
QBL---to complain about (something)
H\&@R--to regret (something)
PYQD--to command (someone)
WYTR--to give up (place)
HXLY@--to decide (question)
NYGN---to play (musical instmment.)

Examples of verbs governing the direct object with the preposition OM ($r=8$):

GWR----to duel 22 with (someone)
Example of verbs governing the direct object with the preposition LPNY ($\mathrm{r}=10$):

YSB----to study under (someone)
Examples of verbs governing the direct object with the preposition AXRY ($\mathrm{r}=12$):

RDP----to puisue (someone)
XYPC---to scek (something)
This Class also includes the passive transformation of itself (Class 5 verbs). This transiormation is the distinction between Class 2 verbs that may be modified by an adverbial prepositional phrase and Class 5 verbs that govern an object with a preposition. Class 2 verbs do not undergo the passive twansformation. The transformation has the following derivation:

This class also includes the passive transformation of Class 3 verbs.

Example:

> DWBR---to be spoken HWBN---to be understood HWLBS--to be dressed HWPC?--to be stopped

This transformation has the following derivation:

-Class 6: Purpose Verbs.

These verbs express purpose, ability, etc., and require an infinitive to complete the sense. They are found in the following syntactic construction:

$$
N_{s p}+v_{6}+N_{v}
$$

The value of attribute subscript r must be 1 for both V and N_{v}.

Examples:
HSKYM=--to agree to $N v$
R\&A-==--to want to N v,
HCPYQ-=-to manage to ${ }^{v} N$
YKWL----to be abze to \mathcal{N}_{v}

-Class 7: Discourse Verbs.

These verbs express the act of speaking, thinking, wishing, and the like. They are found in the syntactic construction:

$$
\mathrm{N}_{\mathrm{sp}}+\mathrm{v}_{7}+\mathrm{s}
$$

Examples:

$$
\begin{aligned}
& \text { AMR---to say } S \\
& \text { SAL---to ask } S \\
& \text { BYQS--to aek } S \\
& \text { XSB---to think } S \\
& \text { ONH---to answer } S
\end{aligned}
$$

-Class 8: Double Accusative Verbs.
These verbs require two accusatives to complete the sense and are found in the following syntactic construction:

$$
N_{s p}+V_{8}+N_{o p}+N_{o p}
$$

Attribute r is nonoperative ($r=0$).
Examples of verbs with one accusative of person and one of thing:

$$
\begin{aligned}
& \text { LYMD---to teach (someone) (something) } \\
& \text { 太YWH---to enjoin (someone) (something) } \\
& \text { AYZR---to gird (someone) with (something) } \\
& \text { oY@R---to (Yown (someone) with (something) }
\end{aligned}
$$

Examples of verbs with one accusative of thing and one of material:

> XGR---to wrap (something) with (something) \&YPH--to cover (something) with (something) @WX--to plaster (something) with (something) O@R--to encircle (something) with (something) ZRO--to sow (something) with (something) OSH--to make (something) of (something) Y\&R---t, form (something) of (something) BNH--to build (something) of (something) MYLA--to fill (something) with (something)

This class also includes the causative transformation of transitive Class 3 verbs.

Examples:
HRAH----to show (someone) (something)
HWDYO---to cause (someone) to know (something)
(Classical Hebrew only)
HLBYS---to cause (someone) to put on (clothes)
HYCYR--to cause (someone) to lack (something)
HAKYL---to feed (someone) (something)
HSQH---to cause (someone) to drink (something)

This transformation has the following derivation:

2.2.2.4.19 Infinitives Absolute (W)

Infinitives absolute are cognate adverbs formed by a special inflection of Hebrew verbs. They have attributes m, c, ℓ, y, r, a, b, w and j. Infinitives absolute have the unique syntactic construction
(a) $\mathrm{V}+\mathrm{W}$
(b) $\mathrm{W}+\mathrm{v}$
where attributes s and w are dependent variables governed by V, in which case they emphasize the certainty or endurance of the verbal action. They are also used as an alternate of the imperative mood of the verb.

There are eight classes of infinitives absolute that correspond exactly to the efght classes of verbs. Reference is made to the description of verbs for a definition of these classes. The infinitive absolute is not used in modern hebrew.

2.2.2.4.20 Infinitives Construct (Y) ${ }^{24}$

Infinitives construct are verbal nouns formed by a special inflection of Hebrew verbs. They have attributes $m, c, \ell, y_{s}, r_{3}, s_{3}$ w and j. The infinitive construct expresses the abstract concept of the deed of the verbal action of its root. It mey govern a direct object like the active voice of the finite verb. The infinitive construct phrase may take the place of a noun in a sentence.

There are eight classes of infinitives construct that corresponds exactly to the eight classes of verbs. Reference is made to the description of verbs for a definition of these classes.

This completes the description of the terminal symbol.

[^6]
2.2.3 Replacement Rules (Ω)

The replacement rules concist of an un rdered set of rules of the form

$$
\begin{equation*}
A=B+C \tag{i}
\end{equation*}
$$

which is read "replace A with $B+C$ ". The symbol left of the equal sign is referred to as the left member of the rule (A above): and the symbol(s) right of the equal sign are referred to as the right member (s) of the rule (B and C above). The plus sign (+) indicates that the symbols are linked together in a sequential string. Given a sequential string of symbols, a replacement rule may operate on the string if the left member of the rule is identical to one of the symbols in the string. The rule operates on this symbol by replacing it with the right member(s) of the rule. For example, given the sequential string of symbols

$$
\begin{equation*}
A+D \tag{ii}
\end{equation*}
$$

the above rule (i) may operate on symbol A to produce the new string

$$
\begin{equation*}
B+C+D \tag{iii}
\end{equation*}
$$

The grammar continues to apply replacement rules until the string contains only terminal symbols.

Each nonterminal symbol of the grammar represents a phrase of the language. The rules define the content and structure of a given phrase in terms of its constituent terminal symbols and/or intermediate phrases in their proper sequential order. Usually the unique linguistic feature associated with each symbol may assume several values, in which case, an alternate version of the rule is given for each value. In the generalized gramar (see Part I), rules oif this type are written in the form

$$
A_{c}=\left\{\begin{array}{l}
B+C \\
C+D \\
B+D
\end{array}\right\}^{c}
$$

In this section the rules are written in the expanded orm

$$
\begin{aligned}
& A_{1}=B+C \\
& A_{2}=C+D \\
& A_{3}+B+D
\end{aligned}
$$

Each alternate version of the rule is usually defined and inlustrated separately.

There are two types of rules in the grammar:
(1) rules on variable symbols, i.e., rules having a variable symbol (F) as left member;
(2) rules on fixed symbole, i.e., rules having an initial symbol or intermediate symbol as left member.

Since the grammar has complex constituents, the subscripts of the symbols enter into the computations. A rule in the grammar may operate on a symbol in a string under defined conditions. Each of the two types of rules has its own defined conditions for operating on a symbol.
2.2.3.1 Conditions fer Operation of Rules on Variable Symbols

Replacement rules on variable symbols may operate on a symbol in a string under the following condition:

Fixed attributes (numerical subscripts) of the left member of the rule must be the same as those of the symbol in the string.

If the left member of the rule meets this condition it operates on the symbol as follows:
(1) the variable symbol in the replacement rule is defined as the symbol of the string.
(2) the values of the dependent attributes of the replacement rule are defined by the value of the corresnonding attribute of the symbol in the string, including zero and nine.
(3) the value of the independent attributes of each fixed non-compound symbol in right member of the rule are defined from input data.
(4) the symbol of the string is replaced by the right members of the rule.

For example; given the ofring

$$
\begin{equation*}
A_{(1413)}+D_{(112309)} \tag{iv}
\end{equation*}
$$

and the replacement rule

$$
\begin{equation*}
F_{(112 c \ell y)}=F_{(110 \ell y)}+C_{(1012)}+F_{(111 c \ell y)} \tag{v}
\end{equation*}
$$

The rule meets the condition for operating on symbol D of the siring, so the rule operates as follows:
(1) the variable symbol F is defined as D
(2) the values of dependent attributes are defined as

$$
\begin{aligned}
& c=3 \\
& \ell=0 \\
& \mathrm{y}=9
\end{aligned}
$$

(3) the value of the independent attribute y is defined by the infut (say $y=0$), and the rule is interpreted as

$$
\bar{D}_{(112309)}=D_{(110300)}+\mathrm{C}_{(1012)}+\mathrm{D}_{(111309)}
$$

(4) the newly interpreted rule operates on symbol D of the string to produce the new string

$$
\begin{equation*}
A_{(1413)}+D_{(110300)}+C_{(1012)}+D_{(111309)} \tag{vii}
\end{equation*}
$$

Rule (v) is an example of a general compounding rule that can operate on a large variety of symbols.

2.2.3.2 Conditions for Operation of Rules on Fixed Symbols

Replacement rules on fixed symbols may operate on a symbol in a string under the following conditions:
(1) the left member symbol of the rule must be the same as the symbol of the string
(2) the fixed attributes (numerical subscripts) of the left member of the rule must be the same as those of the symbol of the string
(3) the left member of the rule must not have dependent attributes (alphabetic subscripts) that correspond to a nonoperative attribute, or to an undefined independent attribute of the symbol of the string (i.e., subscript $\neq 0,9$).

If the left member of a rule meets these conditions, it operates on the symbol of a string as follows:
(1) the values of the dependent attributes of the replacement rule are defined by the value of the corresponding attribute of the symbol in the string.
(2) the value of the independent attributes of each right member symbol of the rule are defined from input data.
(3) the right member symbols of the rule replace the symbol in the string.

For example, given string (iv) and rule

$$
\begin{equation*}
A_{(1 f k c)}=B_{(1 f k c)}+C_{(19 k c)} \tag{vi1i}
\end{equation*}
$$

The rule meets the conditions for operating on symbol A of the string, so the rule operates as follows:
(1) the values of dependent attributes are defined as

$$
\begin{aligned}
\mathbf{f} & =4 \\
k & =1 \\
c & =3
\end{aligned}
$$

(2) the value of the independent attribute of symbol C is defined by the input (say $f=2$), and the rule is interpxetied as

$$
\begin{equation*}
A_{(1413)}=B_{(1413)}+C_{(1213)} \tag{ix}
\end{equation*}
$$

(3) the newly interpreted rule operates on symbol A of the string to produce the new string .

$$
\begin{equation*}
{ }^{\mathrm{B}}(1413)^{+\mathrm{C}_{(1213)}+\mathrm{D}_{(112309)}} \tag{x}
\end{equation*}
$$

Rule (viii) illustrates the generative power of the grammar. The one rule covers all permutations of the values or subscripts $\underline{f}, \underline{k}$, and \underline{c}.

2.2.3.3 Rules on 'ariable Symbols

Piles on variable symbols have a variable symbol (F) as left member. They are used to express general syntactic constructions that are common to many symbols in the grammar. One rule on F replaces many structually identical rules on other symbols that would be required otherwise. There are three sets of rules on variajle symbols:

$$
2-46
$$

(1) Mandatory-Optional Rules
(2) Negation Rules
(3) Compounding Rules

2.2.3.3.1 Mandatory-Optiona? Rules

All symbols in che grammar have the mandatory/optional attribute (m) which is always a fixed value of 9 (optional) or 1 (mandatory). Optional symbols may be omitted or made mandatory undet control of input data. The following rule enables the grammar to make this choice.

$$
\begin{equation*}
F(O f k b c \ell y d n g p r a v i t s w)=* \tag{1.1}
\end{equation*}
$$

where k signifies deletion of the symbol from the string. This is the only rule of the grammar that operates on nonmandatory symbois (i.e., $\mathrm{m} \neq 1$); all uther rules have mandatory left members.

2.2.3.3.2 Negation Rules

Many symbois in the grammar have the negative/positive attribute y. Negative symbols $(y=1)$ are negated by preceding the symbol witk the proper negative. The following rule performs this operation:
$F_{(1 f 0 b c \ell 1 d n g p r a v i t s w)}=L_{(10001 \ell)}+F_{(1 f O b c \ell O d n g p r a v i t s w)}$ (2.1)
This is the only rule in the grammar with a negative symbol as left member, thus it must operate on all negative symbols in a string. The class of the negative L is defined by the value of dependent attribute ℓ. Note that this rule only operates on noncompounded symbols ($k=0$). For examples, see Figure 2.4 and sentence 23.25

2.2.3.3.3 Compounding Ru7es

Certain symbols in the grammar rules may be compounded after specified patterns. The compounding of a symbol is governed by the values of attribute subscripts f, \underline{k} and b. Attribute f specifies the compound pattern applicable to the symbol and its value is fixed in all grammar rules. Attribute k specifies the number of times a symbol is compounded and its value is defined by input data. Attribute b specifies the connective pattern applicable to the symbol, and its value is specified by input data.
${ }^{25}$ Sentences used for examples are all contained in section 2.3.1.

Compounding rules are the only rules of the grammar that will operate on compound symbols, i.e., symbols with $k \neq 0$. The only exception is the optional-mandatory rule (1.1). There are four compounding patterns in Hebrew. These are defined in the next sections.

Compounding Pattern 1

Many syntactic constituents of Hebrew require agreement of their attributes when they are compounded. Usually they are compounded after the following pattern:

$$
\begin{aligned}
& F \text { and } F \\
& F \text { or } F \\
& \text { either } F \text { or } R \\
& \text { neither } F \text { nor } F \\
& F, F, \ldots F \text { and } F \\
& F, F, \ldots F \text { or } F \\
& \text { either } F, F, \ldots F \text { or } I \\
& \text { neither } F, F, \ldots F \text { nor } F
\end{aligned}
$$

The following rules govern this pattern:

$$
\begin{align*}
& F_{(1121 c l y d n g p r a v i t s w)}=F_{(1000 c \ell y d n g p r a v i t s w)} \tag{3.1}\\
& +C_{(10001)}+F_{(1000 c \ell y d n g p r a v i t s w)} \\
& \mathrm{F}_{(1122 c \ell y d n g p r a v i t s w)}=\mathrm{F}_{(1000 \mathrm{c} \ell \mathrm{ydng} \mathrm{pravitsw})} \tag{3.2}\\
& +C_{(10002)}+F_{(1000 c \ell y d n g p r a v i t s w)} \\
& F_{(11 k b c \ell y d n g p r a v i t s w)}=F_{(1000 c \ell y d n g p r a v i t s w)} \\
& +\mathrm{T}_{(10003)}+\mathrm{F}_{(11, k-1, b c \ell y d n p r a v i t s w), k>2, b \leq 2} \\
& { }^{F}(11 k 3 c l y d n g p r a v i t s w)={ }^{C}(10002) \tag{3.4}\\
& +{ }^{F}(11 \mathrm{k} 2 l y d n g p r a v i t s w) \\
& F_{(11 k 4 c \ell y d n g p r a v i t s w)}=F_{(11 k 1 c 11 d n g p r a v i t s w)} \tag{3.5}
\end{align*}
$$

For examples see Figure 2.2, Sentences $6,9,10, i 1,12$.

$$
2-48
$$

Compounding Pattern 2

A subject phrase of a sentence may consist of a single noun pl ase (or its equivalent) or a string of noun phrases. The subject phrase must agree with its associated verb phrase in number, gender, and person. However, if the subject phrass consists of a string of noun phrases (or their equivalents), interesting permutations may occur. For instance, if the number attribute of the subject phrase is singular it may consist of one noun phrase of singular number, or it may consist of a string of singulars joined by "or", such as:
(1) singular
(2) singular or singular
(3) singular, singular, ... or singular

If the subject phrase is plural, it may consist of one plural noun phrase, a string of plural or singular noun phrases joined by "and," or a string of plural noun phrases joined by "or," such as:
(1) plural
(2) plural/singular and plural/singular
(3) plural/singular, plural/singular,....and plural/singular
(4) plural or plural
(5) plural, plural,...or plural

If the subject phrase has the first person attribute, it may consist of one first person pronoun, or a string of noun phrases (or equivalent) joined by "and" or "or," only one of which is a first person pronoun. The others may be of second or third person. Example:

We, you and the children
If the subject phrase has the second person attribute it may consist of a single second person pronoun, or a string of noun phrases (or equivalent) joined by "and" or "or," at least one of which is a second person pronoun. The others may be second or third person, but not first person. Example:
you, the women and the children
If the subject phrase has the third person attribute it may consist of a single third person noun phrase (or equivalent) or a string of noun phrases of third person only. Example:
they, th:e women, the children and the furniture
If the of a single feminth noun phrases.

If the subject phrase has the masculine gender, it may consist of a single masculine noun phrase (or equivalent) or a string of noun phrases of masculine gender or of mixed gender. The following rules govern this pattem:

$$
\begin{gather*}
F_{\left(1221 c \ell y d n_{0} g_{0} P_{o}\right.}^{\text {ravitsw })}=F_{\left(1000 c \ell y d n_{1} g_{1} p_{1} \text { ravitsw }\right)} \tag{3.6}\\
+c_{(10001)}+F_{\left(1000 c \ell y d n_{2} g_{2} P_{2} \text { ravitsw }\right)}
\end{gather*}
$$

$$
\begin{equation*}
{ }^{F}\left(1222 c \ell y d n_{o} g_{o} P_{o} \text { ravitsw }\right)=F_{\left(1000 c \ell y d n_{1} g_{1} p_{1} \text { ravitsw }\right)} \tag{3,7}
\end{equation*}
$$

$$
+\mathrm{c}_{(10002)}+\mathrm{F}_{\left(1000 \mathrm{c} \ell \mathrm{ydn}_{2} \mathrm{~g}_{2} \mathrm{p}_{2} \text { ravitsw }\right)}
$$

$$
\begin{equation*}
F_{\left(12 \mathrm{kbc} \ell y d n_{o} g_{o} p_{o} \text { ravitsw }\right)}=F_{\left(1000 c \ell y d n_{1} g_{1} p_{1} \text { ravitsw }\right)} \tag{3.8}
\end{equation*}
$$

$$
+\mathrm{T}_{(10003)}+\mathrm{F}_{\left(12, \mathrm{k}-1, \mathrm{bc} \ell \mathrm{ydn}_{2} \mathrm{~g}_{2} \mathrm{P}_{2} \text { ravitsw }\right), \mathrm{k}>2, \mathrm{~b} \leq 2}
$$

$F_{\left(12 k 3 c l y d n_{o} g_{o} p_{o} \text { ravitsw }\right)}=C_{(10002)}+F_{\left(12 k 2 c l y d n_{o} g_{o} P_{o} r a v i t s w\right)}$
$F_{\left(12 k 4 c l y d n_{0} g_{o} p_{o} \text { ravitsw }\right)}=F_{\left(12 k l c 11 d n_{o} g_{o} P_{o} \text { ravitsw }\right)}$
These rules are of the same form as those for compounding class 1 except for the following constraints:
(1) for the attribute of number: ${ }^{26}$
(a) if $b=1$; then $n_{0}>1$
(b) if $\left(b=2\right.$; and $\left.n_{0}=1\right)$; then $n_{1}=n_{2}=1$
(c) if $\left(b=2\right.$, and $\left.n_{0}>1\right)$; then $n_{1}>1$, or $n_{2}>1$, or both
(2) for the attribute of gender:
(a) if $g_{0}=1$; then $g_{1}=1$, or $g_{2}=1$, or both
${ }^{26}$ In these statements, " b " refers to subscript \underline{b} of the left hand element of the giveri rule.
(b) if $g_{0}=2$; then $g_{1}=g_{2}=2$
(3) for the attribute of person:
(a) if $p_{0}=1$; then $P_{1}=1$, or $p_{2}=1$
(b) if $p_{0}=2$; then $\left(p_{1} \neq 1\right.$, and $\left.p_{2} \neq 1\right)$, and $\left(\mathrm{p}_{1}=2\right.$, or $\mathrm{p}_{2}=2$, or both)
(c) if $p_{0}=3$; then $p_{1}=p_{2}=3$

For examples see sentence A (symbol NAPI).
Compounding Pattern 3
There are syntactic units that require agreement of the attributes when compounded in a given context. They are separated by commas but are not connected by conjunctions. This is true of moun phrases in apposition. The rules for this pattern are:

$$
\begin{align*}
& F_{(13 k b c \ell y d n g p r a v i t s w)}=F_{(1000 b c \ell y d n g p r a v i t s w)} \tag{3.11}\\
& \quad+T_{(10003)}+F_{(13, k=1, b c \ell y d n g p r a v i t s w),} \\
& F_{(132 b c l y d n g p r a v i t s w)}=F_{(1000 c l y d n g p r a v i t s w)} \tag{3.12}\\
& \quad+T_{(10003)}+F_{(1000 c \ell y d n g p r a v i t s w)}
\end{align*}
$$

Rule (3.11) operates only when k is greater than 2 .

Compounding Pattern 4

There are syntactic units which require agreement and which are not separated by commas nor joined by conjunction when compounded. These are the construct noums, construct participles, and adverbs. The rules are:

$$
\begin{gather*}
F_{(14 k b c \ell y d n g p r a v i t s w)}=F_{(1000 k c \ell y d n g p r a v i t s w)} \tag{3.13}\\
\quad+F_{(14, k-1, b c \ell y d n g p r a v i t s w), \quad k>2}
\end{gather*}
$$

$$
2-51
$$

$$
\begin{gather*}
F_{(142 b c \ell y d n g p r a v i t s w)}=F_{(1000 k c l y d n g p r a v i t s w)} \tag{3.14}\\
+F_{(1000 k c \ell y d n g p r a v i t s w)}
\end{gather*}
$$

Rule (3.13) operates when k is greater than 2. This completes the rules on variable symbols. For examples see sentence 1 and 3.

2.2.3.4 Rules on Terminal Symbols

By definition terminal symbols are those for which there are no replacement rules. A string of terminal symbols produced by the grammar represents the words of a sentence in the grammar, with each word in correct syntactic order and completely described gramatically.

A string of terminal symbols serves as the input data to the word generating grammar which operates on the symbols to produce the correct orthography of the sentence.

2.2.3.5 Rules on Intermediate Symbols

The rules on intermediate symbols constitute the greatest number of rules of the grammar. They are presented so as to define the basic constituents first. An attempt is made to arrange the rules so that all symbols in a given rule are previously defined. Occasionally this is not possible, but in these cases reference is made to the subsequent section in which the symbol is defined. The rules on intermediate symbols are presented in the sections that follow. 27

2.2.3.5.1 Prepositional-Pronoun Phrase (Z)

The prepositional-pronoun phrase consists of a preposition (P) and an objective pronoun (R). For example: the preposition ALY (to) with the pronominal suffix $K M$ (you) forms the compound word ALYKM--to you. There is only one class of this symbol. The rule is:

$$
\begin{equation*}
z_{(100010 y 0 n g p r)}=P_{(100011 y 0000 r)}+R_{(10003000 \mathrm{ngP})} \tag{4.1}
\end{equation*}
$$

The preposition (P) cannot be compounded and it takes a Class 1 negative (LWA). The pronominal suffix cannot be compounded or negated; its attributes of number, gender, and person are dependent variables. See Figure 2.1 for illustrations of the structure of this phrase.

27 It is assumed, without being explicitly stated in the rules, that the root letters of the terminal symbols are independent variable, unless stated otherwise.

Figure $2.1(A)$

Figure 2.1(B): Structure of Preposition-Pronoun Phrase 2-53

2.2.3.5.2 Objective-Interrogative Verb Phrase ($V_{q 0}$)

The objective interrogative verb phrase is used as the predicate of an objective-interrogative phrase (see Section 2.2.3.5.7). This set of rules provides the proper transformation to remove the direct object from the predicate of the interrogative sentence (see Section 2.2.3.5.71).

The rules aze:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{qo}}(100010 y 0 n g \mathrm{gr} 3 \mathrm{vit}) \tag{5.1}\\
& =\mathrm{V}_{\mathrm{p}}(100010 y \text { Ongpr2vit) } \tag{5.2}\\
& \mathrm{V}_{\mathrm{qo}}(100010 y 0 n g \mathrm{gr} 4 \mathrm{vit}) \tag{5.3}\\
& =\mathrm{V}_{\mathrm{p}}(100010 y 0 n g p r 5 v i t) \\
& \mathrm{V}_{\mathrm{qo}}(100010 y 0 n g \mathrm{pr} \\
& \\
&
\end{align*}
$$

2.2.3.5.3 The Basic Post-Nominal Adjective Phrase (Apa)

The basic adjective phrase usually expresses qualitative ${ }^{28}$ or indefinite quantitative ${ }^{29}$ attributes of nouns or their equivalent. It has attributes $\bar{y}, \underline{d}, \underline{n}$, and g, and has three classes. class 1 expresses the noncomparative degree and consists of an adjective and an optional adverb modifier. 30 See Figures 2.2 A and 2.4 for illustra= tions of the structure, also sentences 4,7 and 8 .

The rule is:

$$
\begin{equation*}
A_{p a(100010 y d n g)}=A_{(100011 y d n g)}+D_{(9490400)} \tag{6.1}
\end{equation*}
$$

The adjective (A) is the name of some value on the scale of a semantic dimension. It usually represents a range of values, which can be narrowed down by the use of the optional adverb (D). This may be illustrated as follows:
${ }^{28}$ The basic post-nominal adjective phrase should also include definite quantitative attributes, including either cardinal or ordinal number. These will be included later.
29 See also Section 2.2 .3 .5 .6 for a discussion of the indefinite article and use of AXD
${ }^{30}$ The modifiers of adjectives other than class 4 adverbs must be included in these rules.

Semantic Scale "Size"

Class 2 expresses the comparative degree and consists of an adjective, the preposition $M / M N=-$ from, followed by the thing being compared. See Figure 2.3 and Sentence 2 for illustrations of the structure.

Example: DWD GDWL MN SAWL -- David is greater than Saul
The rule is:

$$
\begin{array}{r}
A_{p a(100020 y d n g)}=A_{(100010 y 1 n g)}+X_{p(119990000009)} \tag{6.2}\\
\mathbf{r}=4,5
\end{array}
$$

The constituent (X_{p}) is a prepositional phrase that is introduced by the preposition M or $M N$, and is described in Section 2.2.3.5.38; the object of the preposition is a noun or equivalent.

This class is used to compare nouns with respect to their values on the scale of some common semantic dimension. This may be expressed as

$$
A\left(n_{1}\right) \leftrightarrow A\left(n_{2}\right)
$$

and it may be illustrated as follows:

Semantic Scale "Size"

Class 3 expresses the superlative degree and consists of an adjective, the preposition $B--i n$, followed by the thing being compared. Example: DWD HGDWL BYSRAL - David is the qreatest in Israel

The rule is:

$$
\begin{equation*}
A_{c(100020 y 2 n g)}=A_{(100011 y 2 n g)}+X_{p(119990000002)} \tag{6,3}
\end{equation*}
$$

(A)

$\begin{gathered} \text { APA3 } \\ \text { I. } \end{gathered}$			
I		I	
A-1		XP2	
I		I	
	--	I	
I	I	I	
H-1	I	Z-1	
I	I	I	
I	I		
I	I	I	I
I	I	P-1	R-
I	I	I	I
I	I	I	I
I	T	I	I
I	\underline{i}	I	I
I	I	I	I
I	I	I	I
I	I	I	I
H-1	A-1	P-1	R-3

THE PHRASE-" the smallest (ones) of them"
(B)

Figure 2.2. Structure of Adjective Phrase ($A_{p a}$) 2-56

LWA GDWLH MYHYLDH HZWT THE PHRASE--"NOT LARGER THAN THOSE GIRLS"

Figure 2.3. Structure of $A_{p a}$ class 2

$\begin{gathered} \triangle P A 1 \\ I \end{gathered}$										
			I		I		I		I	
	I		T-3'		I		$\mathrm{C}-\mathrm{l}$		I	
	1		T-3		I		I		I	
			I				I			
I		1	I	I		I	I	I		I
A-1		J-6	I	A-1		D-F	I	A-1		O-F
I		I	I	T		I	I	I		I
		T	I			I	I			I
I	I	I	I	T	I	1	I	I	I	I
$\mathrm{H}-1$	I	T	I	H-1	I	I	I	H-1	I	I
I	I	I	T	T	I	I	I	I	I	I
T	I	I	T	τ	I	I	3	I	1	I
I	I	I	I	I	I	I	I	I	I	$\underline{1}$
I	I	T	I	!	I	I	I	I	I	I
I	I	I	T	I	I	1	I	I	I	I
I	I	I	I	\underline{T}	I	I	I	I	I	I
I	I	T.	T	I	I	I	I	I	1	I
H. 1	A-1	$\bigcirc-6$	$T-?$	H-1	A-1	J-F	$\mathrm{C}=1$	H-1	A-1	0-6

HYPWT MAWD, HGDWLWT MAWD WHQ@NWT MAWD
(A) THE PHRASE--"the very nice, the very large and the very smal? (fem. pl.)"

HYPWT MAWD, HGDWLWT MAWD AW HQ@NWT MAWD
(B) THE PHRASE--"The very nice, the very large or the very small (fem. pl.)"

Figure 2.4: Structure of $A_{\text {pa. }}$ Class 1

The constituent $\left(X_{p}\right)$ is a prepositional phrase that is introduced by the preposition B, and is described in Section 2.2.3.5.38. See Figure 2.2B and Sentence 1 for illustrations of the structure.

This class is used to compar \perp noun with a whole class of nouns with respecs to their vlaues on the scale of some common semantic dimension. This may be expressed as

$$
\begin{aligned}
& N=\left\{n_{1}, n_{2}, \ldots n_{j} \ldots n_{j}\right\} \\
& A\left(n_{j}\right) \leftrightarrow A(N)
\end{aligned}
$$

2.2.3.5.4 The Post-Nominal Adjective Phrase (A_{p})

Adjectives do not have a dual inflection. The post-nominal adjective phrase corrects for this by converting any required dual phrase into the plural. This permits a plural adjective phrase to modify a dual noun according to actual practice. See sentences $1,2,4$ and 7 for illustrations of the structure of this phrase.

Example: OYNYYM @WBYM $=-g o o d$ eyes
The rules for this correciion are:

$$
\begin{align*}
& A_{p(100010 y d n g)}=A_{p a(100090 y d n g),} n \neq 2 \tag{7,1}\\
& A_{p(1000106 d 2 g)}=A_{\mathrm{pa}}(100090 y d 3 g) \tag{7.2}
\end{align*}
$$

2.2.3.5.5 The Adjectival Possessive Phrase $\left(A_{s}\right)$

A noun may be modified by an adjectival possessive phrase to describe ownership. The adjectival possessive phrase is introduced by the possessive particle SL. There are tow classes of this symbol. For Class 1, the possessor is a pronoun. See Sentences A and 23 for illustrations of the structure of this phrase.

Example:" BYYT SLW =- his house
The rule is:

$$
\begin{equation*}
\mathrm{A}_{\mathrm{s}(10001000)}=\mathrm{U}_{(10001000)}+\mathrm{R}_{(10003000999)} \tag{8,1}
\end{equation*}
$$

The prenominal suffix may not be compounded, and its attributes of number, gender, and person are indpendent variables.

For Class 2, the possessor is a noun or equivalent.
Example: HBYYT SL HYLD $H T W B--$ the good boy's house

The rules is:

$$
\begin{equation*}
A_{s(10002000)}=\bar{U}_{(10001000)}+\mathrm{N}_{\mathrm{p}(10001009999)} \tag{8.2}
\end{equation*}
$$

For the noun phrase $\left(N_{p}\right)$, the attributes of number, gender, person, and definiteness are indpendent variables. The noun phrase is not compounded since it is expected that the possessive particle (SL) will be repeated before each member of a compound possessive.

Example: HBYYT SL HYLD WSL HYLDH -= the house of the boy and girl
It is not expected that this phrase is negated. The negative is expressed by other means. The noun phrase. (N_{p}) is defined in Section 2.2.3.5.26

The deep structure derivation of this constituent is as follows:

(Class 2)
(Class 1)

2.2.3.5.6 The Basic Noun Phrase (N_{a})

The basic noun phrase serves as the nucleus of the simple noun phrase. There are three classes of this symbol: (1) the indefinite noun phrase, (2) the definite noun phrase, and (3) the proper noun phrase.

The indefinite noun phrase consists of an absolute state noun (N) only. See Sentences $1,4,5$ and 7 for illustrations. The structure is:

$$
\begin{align*}
& \mathrm{N}_{a(100010 y d n g p)}=\mathrm{N}_{(10001160 \mathrm{ngp}),} \mathrm{d} \neq 2 \tag{9.1}\\
& \mathrm{~N}_{\mathrm{a}(100010 \mathrm{y} 1 \mathrm{ngp})}=\mathrm{N}_{(100011 \mathrm{y} 0 \mathrm{ngp})}+\mathrm{B}_{(10001000 \mathrm{ng})} \tag{9.2}
\end{align*}
$$

Rule (9.2) states that an indefinite noun may be expressed by a noun followed by the number one. 31

Example: AYS AXD -- a man; ANSYM AXDYM -- some men
The definite noun phrase consists of the definite article (H) and an absolute state noun (N). The structure is:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{a}(100020 \mathrm{y} 2 \mathrm{ngp})}={ }^{\mathrm{H}}(100011 \mathrm{y})+{ }^{\mathrm{N}}(10001000 \mathrm{ngp}) \tag{9,3}
\end{equation*}
$$

The phrase contains class 1 nouns only i.e., no proper nouns. Note that the definite article carries the negation for the phrase.

Proper nouns are definite with, no written definite article. The structure of the proper noun phrase is:

$$
\begin{equation*}
N_{a(100030 y 2 n g p)}=N_{(149991 y 0 n g p)}^{c \neq 1} \tag{9.4}
\end{equation*}
$$

Provision is made for a string of proper nouns compounded after Pattern 4. See Sentences $A, 1,2,3.6,7,8$, and others for illustrations of this phrase.

The deep structure derivation of this constituent is as follows:

$$
\text { Given: } \quad N=\left\{n_{1}, n_{2}, \ldots n_{j} \ldots n_{J}\right\}
$$

where 1,2 ,J are proper names of the elements.
$\left.\begin{array}{l}\text { (a) } N_{a}=N(\text { collectively), } d=0, n=1, c=1 \\ \text { (b) } N_{a} \in N, d=0, n=1, c=1 \\ \text { (c) } N_{a} \subseteq N, d=0, n>1, d=1\end{array}\right\}$ Rule 9.2$\} \quad$ Rule 9.1
$\left.\begin{array}{l}\text { (d) } N_{a}=N_{j}, d=2, n=1, \quad c=1 \\ \text { (e) } N_{a}=N_{b} \subseteq N, d=2, n>1, c=1\end{array}\right\} \quad$ Rule 9.3
(f) $N_{a}=j, d=2, n=1, c>1$

Rule 9.4
${ }^{31}$ See Ornan, The Nominal Phrase in Modern Hebrew, Chapter 2 on articles. He discusses the use of AXD as an indefinite article. He also includes 'kamma' =- some with "exad" as an indefinite article. However, its prenominal position seems to make it a member of the qualifier phrase along with "all," "every", some," etc., which must be added to the grammar.

Where these statements are interpreted as follows:
(a) N_{a} is Class N collectively.
(b) N_{a} is an unnamed element of N .
(c) N_{a} is an unnamed subclass of N .
(d) N_{a} is a previously referenced element of N.
(e) N_{a} is a previously referenced subclass of N .
(f) N_{a} is the element of N whose name is j.

2.2.3.5.7 Objective-Interogative Phrase ($S_{q 0}$)

The objective-interogative phrase is the predicate of an objective-pronoun interogative clause in which the direct object of the verbal is questioned (see Section 2.2.3.5.71). The phrase has two classes. In class 1 the subject of the verbal is not named; in Class 2 the subject is named. The rules are:

$$
\begin{align*}
& \mathrm{s}_{\mathrm{qo}(100010 y 0 n g p r)}=\mathrm{V}_{\mathrm{q} \circ}(119910 y 0 \mathrm{ngpr} 9999) \tag{10.1}\\
& \mathrm{s}_{\mathrm{qo}}(100020 y 0 n g \mathrm{n}) \tag{10.2}
\end{align*}=\mathrm{N}_{\mathrm{sp}}(12999099 \mathrm{ngp}) .
$$

$$
+\mathrm{V}_{\mathrm{qo}}(119910 y 0 \mathrm{ngpr} 9999)
$$

See Sentence 6A for an illustration of the structure of this
phrase.

2.2.3.5.8 The Genitive-Pronoun Phrase $\left(N_{s}\right)$

A noun may be modified by a possessive pronoun as follows: the noun must be in the construct state. (J) with an attached pronominal suffix.

Example: CPRW -- his book
The attached pronoun may also express other genitive relations.
Example: MWTW -- his death
See Sentence 23A for an illustration of this phrase.

There is one class of this symbol. The rule is:

$$
\begin{equation*}
N_{s(100010 y 2 n g p)}=J_{(100011 y 0 n g p)} \neq R_{(10003000999)} \tag{11.1}
\end{equation*}
$$

The noun may not be compounded and its attributes of number, gender, and person are dependent variables. The pronoun may not be compounded and its attributes of number, gender, and person are independent variables.

The deep structure derivation of this constituent is as follows: $V_{g}=$ Subject governs object by genitive relationship.

See Section 2.2.3.5.5.for a special alternate derivation for the relationship of posession, and see section 2.2.3.5:23 for a discussion of the more general case.

2.2.3.5.9 The Basic Demonstrative Pronoun Phrase (R_{d})

The basic demonstrative pronoun phrase consists of an definite demonstrative pronoun, a definite demonstrative pronoun, or a definite personal pronoun. There are three classes of this symbol: (1) the indefinite basic demonstrative pronoun prase, (2) the definite basic demonstrative pronoun phrase, and (3) the emphatic definite basic demonstrative pronoun phrase.

The indefinite basic demonstrative pronoun phrase is used in place of a noun where the noun is to be distinguished from others of the same class.

Example: $2 H$ HYLD -- this is the boy
The rule is:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{d}(100010 y \text { dngp })}=\mathrm{R}_{(100011 \text { yOng } 3)} \tag{12.1}
\end{equation*}
$$

The definite basic demonstrative pronoun phrase may modify a definite noun, ${ }^{32}$ In which case the demonstrative points to objects near in space, time, or thought. It is equivalent to the English this. See Sentences 8,9, and 12 for illustrations of this phrase.

Example: HYLD HZH $=-$ this boy
The rule is:

$$
\begin{equation*}
R_{d(100020 y 2 n g 3)}=H_{(100011 y)}+R_{\left(1000100 n_{g} 3\right)} \tag{12.2}
\end{equation*}
$$

In addition to the demonstrative pronoun, the definite personal pronoun may serve as a definite demonstrative pronoun phrase, in which case it points to objects remote in space, time or thought. It is equivalent to the English that.

Example: HYLD HHWA -- that boy
The rule is:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{a}(100030 \mathrm{y} 2 \mathrm{ng} 3)}=\mathrm{H}_{(100011 \mathrm{y})}+\mathrm{R}_{(1000200 \mathrm{ng} 3)} \tag{12,3}
\end{equation*}
$$

These phrases are limited to third person contexts. The symbols may not be compounded.

[^7]The deep structure derivation of this constituent is as follows:
Given:

$$
\begin{align*}
& N=\left\{n_{1}, n_{2}, \ldots n_{j} \ldots n_{J}\right\} \\
& n_{1} \text { is near } \\
& n_{J} \text { is far } \\
& N \rightarrow R_{d}=\left\{n_{1}, n_{2}, \ldots n_{j} \ldots n_{J}\right\} \tag{Rule12.1}\\
& N+R_{d}=\left\{n_{1}^{\prime}, n_{2}, \ldots n_{j} \ldots n_{J}\right\} \\
& N+R_{d}=\left\{n_{1}, n_{2}, \ldots n_{j} \ldots n_{J}^{t}\right\}
\end{align*}
$$

(Rule 12.2)
(Rule 12.3)

2.2.3.5.10 Direct Object Pronoun Phrase (R_{o})

The direct object pronoun phrase consists of the sign of the direct object (0) and a pronominal suffix. The direct object pronom serves as the direct object of a verb. It is listed separate from the direct object noun phrase (N_{o}) since it occupies different structural positions in verb phrases, See Sentences 10 and 12 for illustrations of this phrase.

There is one class of this symbol. The rule is:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{o}(100010 \mathrm{y} 2 \mathrm{ngp})}=\mathrm{o}_{(100011 \mathrm{y})}+\mathrm{R}_{(10003000 \mathrm{ngp})} \tag{13.1}
\end{equation*}
$$

2.2.3.5.11 The Units Number Phrase ($\mathrm{Ba}_{\mathrm{aa}}$)

Reference should be made to the section describing terminal symbol B which contains initial remarks on numbers.

Units number phrases contain number 1 through 9 and consist of one singular declension of Number Classes 1,2, or 3. Reviewing the content of these number classes,

$$
\begin{aligned}
& { }^{\mathrm{B}}(1)=1 \\
& { }^{\mathrm{B}}{ }_{(2)}=2 \\
& { }^{\mathrm{B}}(3)=3,4,5,6,7,8,9
\end{aligned}
$$

There are three classes of this symbol. Class 1 consists of the number 1. Class 2 consists of the number 2. Class 3 contains the numbers thisee through nine. The rules are:

$$
\begin{align*}
& \mathrm{B}_{\mathrm{aa}(100010001 \mathrm{~g})}={ }^{\mathrm{B}}(100010001 \mathrm{~g}) \tag{14.1}\\
& \mathrm{B}_{\mathrm{aa}(100020002 \mathrm{~g})}=\mathrm{B}^{\mathrm{B}}(100020002 \mathrm{~g}) \tag{14.2}\\
& \mathrm{B}_{\mathrm{aa}(1000300031)}={ }^{\mathrm{B}}(1000300012) \tag{14.3}\\
& \mathrm{B}_{\mathrm{aa}(1000300032)}={ }^{\mathrm{B}}(1000300011) \tag{14.4}
\end{align*}
$$

Compounding ts not permitted. The numbers (B) are required in the singular declension, except 2 which takes the dual (SNYYM/STYYM). Agreement is required for gender for numbers 1 and 2 , but numbers 3-9 have opposite gender agreement. That is, a true masculine context requixes these numbers in feminine declension, and the true feminine context requires the masculing declension. Rules (16.3) and (16.4) correct for this requirement.

2.2.3.5.12 The Tens Number Phrase (B_{ab})

Tens number phrases consist of the number 10. For structural reasons, this number is handled as a separate symbol. In the singular form the word means 10 , and in the plural form the word means 20. Only the singular form (10) is included here. The rules are:

$$
\begin{align*}
& B_{a b}(1000100031)=B^{B}(1000400012) \tag{15.1}\\
& B_{a b(1000100032)}={ }^{B}(1000400011)
\end{align*}
$$

(15.2)

Note that the feminine deciension appears in a masculine context sind the masculine appears in a femirine context. These rules compensate for this condition. No compounding is permitted.

2.2.3.5.13 The Teens Number Phrase ($\mathrm{Bac}_{\mathrm{ac}}$)

Teens Number Phrases consist of the number 11 through 19, which numbers have a peculiar construction. They ace composed of singular constituents from Number Clasees $1,2,3$, and 4 . Reviewing the content of these number classes.

$$
\begin{aligned}
& { }^{B}(1)=1 \\
& { }^{B}(2)=2 \\
& { }^{B}(3)=3,4,5,6,7,8,9 \\
& { }^{B}(4)=10
\end{aligned}
$$

There are three classes of this symbol. Class 1 contains the number 11. The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{ac}(100010003 \mathrm{~g})}=\mathrm{B}_{\left(100010001_{\mathrm{g}}\right)}+{ }^{\mathrm{B}}(100040001 \mathrm{~g}) \tag{16.1}
\end{equation*}
$$

Example: AKD oss-meleven (masc.)
AKT OSRYH--eZeven (fem.)
Class 2 contains the number 12. The rules are:

$$
\begin{align*}
& \mathrm{B}_{\mathrm{ac}(100020003 \mathrm{~g})}=\mathrm{B}_{(100020003 \mathrm{~g})}+\mathrm{B}_{(100040001 \mathrm{~g})} \tag{16.2}\\
& \mathrm{B}_{\mathrm{ac}(100020003 \mathrm{~g})}=\mathrm{I}_{(100020003 \mathrm{~g})}+\mathrm{B}_{(100040001 \mathrm{~g})} \tag{16,3}
\end{align*}
$$

Example: SNYM OSR--twelve (masc)
STYM OSRH--twezve (fem.)
Note that SNYM/STYM is interpreted as plural rather than dual and it may be either absolute or construct.

Class 3 contains the number 13 through 19. The rules are:

$$
\begin{align*}
& \left.\mathrm{B}_{\mathrm{ac}(1000300031)}=\mathrm{B}_{(1000300012)}+\mathrm{B}_{(1000400011)}\right) \tag{16.4}\\
& \mathrm{B}_{\mathrm{ac}(1000300032)}=\mathrm{B}_{(1000300011)}+\mathrm{B}_{(1000400012)} \tag{16.5}
\end{align*}
$$

Here again the constituents 3-9 take the gender declension opposite to the context, but the special word from 10 agrees with the gender cf the context.

Example: SLWSH OSR--thirteen (masc.)
XMS OSRYH--fifteen (fem.)
2.2.3.5.14 Multi-tens Number Phrases ($\mathrm{Bad}_{\mathrm{ad}}$)

Multiples of ten are expressed as follows:
$\operatorname{ten}(p 1)=$. twenty
three (p1.) = thirty
four (p1.) $=$ farty
nine (p1.) = ninety

These numbers have the masculine declension only but appear in contexts of either gender: they are ambiguous in the gender attribute.

There are two classes of this symbol. Class 1 contains the number 20. The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{ad}(100010003 \mathrm{~g})}=\mathrm{B}_{(1000400031)} \tag{17.1}
\end{equation*}
$$

Example: OSRYM--iwenty (mase./ fem.)
Class 2 contains the numbers $30,40,50,60,70,80$, and 90 . The rule is:

$$
\begin{equation*}
B_{a d(100020003 g)}=B_{(1000300031)} \tag{17.2}
\end{equation*}
$$

Example: ARBOYM-fonty (masa./fem.)
2.2.3.5.75 Hundreds Number Phrase ($\mathrm{Bae}_{\text {ae }}$)

The number 100 is expressed by the feminine singular deciension of MAH. The number 200 is expressed either by the feminine dual MATYYM or with the feminine construct of 2 (STY) and the plural MAWT. All remaining multiples of 100 (3-9) are expressed with the masculine singular construct of the multiple and the feminine plural of 100.

Examples: $\quad 100=$ MAH
$200=$ MATYYM or STY MAWT
$300=$ SLWS MAWT
$400=$ ARBO MAWT
$900=$ TSO MAWT
Since the masculine singular absolute form is identical with the mascuilne singular construct form, it is not clear, at this point, chat the numbers 3-9 are constructs. However, the paraliel condition in multiples of loOO (see Section 4.2.3.5.16), clearly uses constructs; therefore, it is proper to incerpret the same wumers as constructs in this context. Likewise, it is consigtent with the use of the construct of 2 in the number 200 .

There are three classes of this symbol. Class 1 contains the number 100 . The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{ae}(100010003 \mathrm{~g})}={ }^{\mathrm{B}}(1000500012) \tag{18.1}
\end{equation*}
$$

Class 2 contalns the number 200 which has two alternate forms. The rules are:

$$
\begin{gather*}
\mathrm{B}_{\mathrm{ae}(100020003 \mathrm{~g})}=\mathrm{B}_{(1000500022)} \tag{18.2}\\
\mathrm{B}_{\mathrm{ae}(100020003 \mathrm{~g})}=\mathrm{I}_{(1000200032)}+\mathrm{B}_{(1000500032)}
\end{gather*}
$$

Class 3 contains the numbers $300,400,500,600,700,800$, and 900. The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{ae}(100030003 \mathrm{~g})}=\mathrm{I}_{(1000300011)}+\mathrm{B}_{(1000500032)} \tag{18.4}
\end{equation*}
$$

No compounding is permitted, and the phrase is ambiguous for the gender attribute.

2.2.3.5.16 Thousands Number Phrase ($\mathrm{Baf}_{\mathrm{af}}$)

This phrase contains the number 1,000 and multiples of 1,000 . The number 1,000 is expressed by the masculine singular form ALP. The number 2,000 is expressed either by the dual AI,PYYM or with the masculine contruct of 2 (SNY) and the plural ALPYM. All remaining multiples of 1,000 (3-9) are expressed with the feminine construct of the multiple and the plural of 1,000 .

Examples: $\quad 1,000=$ ALP
$2,000=$ ALPYYM or SNY ALPYM
$3,000=$ SLWST ALPYM
$9,000=$ TSOT ALPYM
There are three classes of this symbol. Class 1 contains the number 1,000. The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{af}(1 \mathrm{C} 0010003 \mathrm{~g})}=\mathrm{B}(1000600011) \tag{19.1}
\end{equation*}
$$

Class 2 contains the number 2,000 which has two alternate forms. The rules are:

$$
\begin{gather*}
\mathrm{B}_{\mathrm{af}(100020003 \mathrm{~g})}=\mathrm{B}_{(1000600021)} \tag{19.2}\\
\mathrm{B}_{\mathrm{af}(100020003 \mathrm{~g})}=\mathrm{I}_{(1000200031)}+\mathrm{B}_{(1000600031)}
\end{gather*}
$$

c. :ss 3 contains the numbers of $3,000,4,000,5,000,6 ; 000$, $7,000,8,006$, and 9,000 . The ruse is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{af}(100030003 \mathrm{~g})}=\mathrm{I}_{(1000300031)}+\mathrm{B}_{(1000600031)} \tag{19.4}
\end{equation*}
$$

The phrase is ambiguous for the attribute of gender. The masculine form of 1,000 is used throughout, and the feminine construct form of numbers

3-9 are used. No compounding is permitted.
2.2.3.5.17 The 1 -to-99 Number Prase (B_{ba})

This phrase contains the numbers 1 to 99 . There are five classes of this symbol. Class 1 contains the numbers 1 to 9 . The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{ba}(10001000 \mathrm{ng})}=\mathrm{B}_{\mathrm{aa}}(10009000 \mathrm{ng}) \tag{20.2}
\end{equation*}
$$

Example: SLWSH--three (masc.)
Class 2 contains the number 10. The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{ba}(100020003 \mathrm{~g})}=\mathrm{B}_{\mathrm{ab}}(100010003 \mathrm{~g}) \tag{20.2}
\end{equation*}
$$

Example: OSR--ten (fem.)
Class 3 contains the number 11 to 19. The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{ba}(100030003 \mathrm{~g})}=\mathrm{B}_{\mathrm{ac}}(100090003 \mathrm{~g}) \tag{20,3}
\end{equation*}
$$

Example: AXD OSR--eleven (masc.)
Class 4 contains multiples ef 10 only, not including 10. The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{ba}(100040003 \mathrm{~g})}=\mathrm{B}_{\mathrm{ad}(100090003 \mathrm{~g})} \tag{20.4}
\end{equation*}
$$

Example: TSOYM--ninety (masc./fem.)
Class 5 contains multiples of 10 plus units, not includirg the numbers in classes 1 through 4 above, that is

21 to 29
31 to 39
etc.
91 to 99
the rule is:

$$
\begin{aligned}
\mathrm{B}_{\mathrm{ba}(100050003 \mathrm{~g})} & =\mathrm{B}_{\mathrm{ad}(100090003 \mathrm{~g})}+\mathrm{C}_{(10001)} \\
+ & \mathrm{B}_{\mathrm{aa}(100090009 \mathrm{~g})}
\end{aligned}
$$

Example: SLWS:M WAXD--thirty-one (masc.)
OSRFM WTSO--twenty-nine (fem.)
2.2.3.5.18 The 100-to-999 Number Phrases (B_{bb})

This phrase contains the numbers from 100 to 909. There are two classes of this symbol. Class 1 contains the number 100 and its multiples up to 900. The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{bb}(100010003 \mathrm{~g})}=\mathrm{B}_{\mathrm{ae}(100090003 \mathrm{~g})} \tag{21.1}
\end{equation*}
$$

Example: SLWS MAWT--three hundred (masc./fem.)
Class 2 contains 100 or multiples of 100 plus any number from 1 to 99 , not including numbers in class 1 above. That is

$$
\begin{aligned}
& \text { 101-199 } \\
& 201-299 \\
& \text { etc. } \\
& 901-999
\end{aligned}
$$

the rule is:

$$
\begin{aligned}
\mathrm{B}_{\mathrm{bb}(100020003 \mathrm{~g})} & =\mathrm{B}_{\mathrm{ae}(100090003 \mathrm{~g})}+\mathrm{C}_{(90001)} \\
& +\mathrm{B}_{\mathrm{ba}(100090009 \mathrm{~g})}
\end{aligned}
$$

Example: SLWS MAWT (W)TSOYM--three hundred ninety (masc./fem.)
SLWS MAWT TSOYM WAXD--three hundred ninety-one (masc.)
2.2.3.5.19 The $1-999$ Number Phrase (B_{a})

This phrase contains the numbers from 1 to 999 . The symbol has two classes. Class 1 contains the numbers from 1 to 99. The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{a}(10001000 \mathrm{ng})}=\mathrm{B}_{\mathrm{ba}\left(10009000_{\mathrm{ng}}\right)} \tag{22.1}
\end{equation*}
$$

The class 2 contains the numbers from 100 to 999. The rule is:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{c}(100020003 \mathrm{~g})}=\mathrm{B}_{\mathrm{bb}}(100090003 \mathrm{~g}) \tag{22.2}
\end{equation*}
$$

$$
2-71
$$

2.2.3.5.20 The 1000-to-9999 Number Phrase (B_{bc})

This phrase contains the numbers 1,000 through 9,999. This symbol has two classes. Class 1 contains the number 1,000 and multiples of 1,000 up to 9,000. Tne rule is:
$\mathrm{B}_{\mathrm{bc}(100010003 \mathrm{~g})}=\mathrm{B}_{\mathrm{af}(100090003 \mathrm{~g})}$
Example:
SLNST ALPYM--three thousand (masc./fem.)

Class 2 contains 1,000 or multiples of 1,000 plus the numbers 1-999, not including Class 1 above. That is

$$
\begin{aligned}
& 1,001 \text { to } 1,999 \\
& 2,001 \text { to } 2,999 \\
& \text { etc. } \\
& 9,001 \text { to } 9,999
\end{aligned}
$$

The rule fist

$$
\begin{aligned}
& \mathrm{B}_{\mathrm{bc}(100020003 \mathrm{~g})}=\mathrm{B}_{\mathrm{af}(100090003 \mathrm{~g})}+\mathrm{C}_{(10001)} \\
& \quad+\mathrm{B}_{\mathrm{a}(100090003 \mathrm{~g})}
\end{aligned}
$$

Examples:
SLWST ALPYM SLWS MAWT--three thousand and three hundred (ambig.)
SLWST ALPYM SLWS MAWT WOSRTM--thmee thousarid three hunilred and twenty (ambig.)
SLWST ALPHYM WSLWS MAWT WSLWSH OSR--thiee thousard three hundred and thireteen (masc.).

No compounding is permitted.

2.2.3.5.21' The 1-to-9999 Numbers Phrase (B_{p})

This phrase includes all nombers from 1 to 9,999. There are two classes of this symbol. Class 1 contains numbers 1 to 999. The rule is:

$$
\begin{equation*}
B_{p(10001000 n g)}=B_{a}(10009000 \mathrm{ng}) \tag{24.1}
\end{equation*}
$$

Class 2 contains the numbers 1,000 to 9,999 . The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{p}(100020003 \mathrm{~g})}=\mathrm{B}_{\mathrm{bc}(10009000 \mathrm{ng})} \tag{24.2}
\end{equation*}
$$

Further rules may be written for numbers greater than 9,999 by continued expansion of the previous techniques. However, no further rules are written here. ${ }^{33}$ One of the two classes of B_{p} will generate the structure for any number from 1 to 9,999 . See sentence 26A for an example of the structure of this phrase.

2.2.3.5.22 The Simple Noun Phrase (N_{pb})

The simple noun phrase serves as the nucleus of the regular noun phrase ($N_{p a}$). It consists of a noun (or its equivalent) and its optional post-nominal modifiers. (Pre-nominal modifiers are added at a higher structural level.) There are three classes of this phrase. In Classes 1 and 2, the nucleus of the phrase is a noun; in Class 3 the nucleus is a verbal noun (participle). The difference between classes 1 and 2 is that Class 1 contains an optional adjectival possessive phrase, whereas class 2 contains a possessive noun phrase (N_{S}), that is, possession is expressed by a pronominal suffix.

Class 1 consists of a basic noun phrase (N_{a}) followed by various optional post-nominal modifiers such as an adjective phrase (A_{p}), a demonstrative pronoun phrase, and an adjectival possessive phrase (A_{s}). See sentences 2, 3 and 5 for examples of this phrase. The rule is:

$$
\begin{aligned}
& N_{p b}(10010 y d n g p)=N_{a(1299900 \text { dngp })}+A_{p(9199909 d n g)} \\
& \quad+R_{d(9000900 \text { dngp })}+A_{s}(9199900)
\end{aligned}
$$

The adjective phrases (A_{p}, A_{s}) may be compounded after Pattern 1 , if present. The compounding of Ap produces a string of adjectives all of which modify N_{a}. The order of the adjectives usually follow the natural order of adjectives in English so that those most remote from the noun in English are most remote in Hebrew, that is, those that come first in English come last in Hebrew. Usually the range of remote adjectives governs the range of near adjectives as follows:

$$
\begin{aligned}
& \left(\left(\left(\left((N) A_{1}\right) A_{2}\right) A_{3}\right) A_{n}\right)-\text {-Hebrew order } \\
& \left(A_{n}\left(A_{3}\left(A_{2}\left(A_{1}(N)\right)\right)\right)\right) \text {--English order }
\end{aligned}
$$

${ }^{33}$ It appears that the number phrase should also include the ordinal number phrase. The internal syntax of ordinal numbers is the same as cardinals except for numbers 1-9. However, the external syntax is somewhat different.

The rules on $N_{p b}$ do not reflect this feature of the language.
The basic noun phrase (N_{a}) may be compounded after Pattern 2 which requires agreement of the attribute of definiteness for each compounded constituent, and which permits certain permutations of number, gender, and person. This permits the construction of the following equivalent phrases:

HYLDYM H@WBYM--the good chizdren
HYLD WHYLDH HQWBYM--the good boy and girl
HYLDYM WHYLDWT H@WBYM--the good boys and girls
In each case the basic noun phrase is masculine, plural, and definite, and the adjective agrees in these attributes. Note that the mixed gender is treated as a masculine.

The adjective phrase is optional. It may be compounded after Pattern 1, and it must agree with the basic noun phrase in number, gender, and definiteness. The demonstrative pronoun is optional. It cannot be compounded, but it must agree with the basic noun phrase, in number, gender, person, and definiteness. The possessive phrase is optional and may be compounded after Pattern 1 .

Examples:

$$
\begin{aligned}
& \text { YLDYM--boys } \\
& \text { YLDYM @WBYM--good boys } \\
& \text { HYLDYM H@WBYM HALH--these good boys } \\
& \text { HYLDYM H@WBYM SL HAYS--the man's good boys }
\end{aligned}
$$

The deep structure derivation of this constituent is as follows:
Given: a set of objects with attribute A

Class 2 consists of the alternated form in which a genitive pronoun phrase $\left(N_{s}\right)$ is used as the nucleus. In this case, the adjectival possessive phrase ${ }^{s}\left(A_{s}\right)$ is not used. Also, it is doubtful that a demonstrative pronoun is used in this case.

Example:
CPRW H@WB=-his good book
The rule is:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{pb}(100020 \mathrm{y} 2 \mathrm{ngp})}=\mathrm{N}_{\mathrm{s}(100010 \mathrm{y} 2 \mathrm{ngp})}+\mathrm{A}_{\mathrm{p}(91999092 \mathrm{ng})} \tag{25.2}
\end{equation*}
$$

In this case the phrase always is definite. Attributes n, g, and p are dependent variables. The adjective phrase is optional, but when used it may be compounded after Pattern 1.

The deep structure derivation of this constituent is as follows:
Given: a set of objects with attribute A

Glass 3 consists of the alternate form in which the noun phrase is replaced by a participle phrase (E_{p}). The rule is:

$$
\begin{equation*}
\left.\bar{N}_{\mathrm{pb}}\left(100030 y \mathrm{a}^{2}\right)=\mathrm{E}_{\mathrm{p}(100090 y d n g \mathrm{p}}\right) \tag{25.3}
\end{equation*}
$$

Attributes y, d, n, g, and p are dependent variables. The participle phrase is not expected to be modified by adjectives, etc., because the modifiers would tend to be ambiguous.

Example:
AWKLY TPWXYM @WBYM--eaters of good appZes, but not good eatens of apples

2.2.3.5.23 The Regular Noun Phrase (N_{pa})

The regular noun phrase serves as the key building block of the general noun phrase (N_{p}) and consists of a simple noun phrase followed by an optional locative adverb, and preceded by an optional number phrase and an optional construct noun. 34 There are three variations of these combinations that constitute the three classes of this symbol. Class 1 is used when no construct nouns are required; it contains an optional number phrase followed by a simple noun phrase, followed by an optiosal locative adverb. See sentences 1,4 and 5 for examples of this phrase. The rule is:

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{pa}(1000100 \text { dng })}=\mathrm{B}_{\mathrm{p}(90009000 \mathrm{ng})}+\mathrm{N}_{\mathrm{pb}(1000900 \mathrm{dngp})} \\
& \quad+\mathrm{D}_{(9499200)}
\end{aligned}
$$

Attributes n, g, p, and d are dependent variables. The number phrase $\left(B_{p}\right)$ is optional, but, when present, it must agree in number and gender. It may not be compounded. The adverb is optional, but may be compounded after Pattern 4.

Example:

SLWSH YLDYM @WBYM SM---three good boys there

The adverb (D), here and in the following rules, is not permitted to be negated. The negative would be expressed by a relative clause.

Example:
ASR LWA SM---who is not there
The structure is covered elsewhere.
Class 2 is used when construct nouns are required; it contains an optional number phrase followed by a construct noun followed by an optional sequence of construct nouns, followed by a basic noun phrase $\left(\mathrm{N}_{a}\right)$, followed by an optional locative adverb. See sentences $1,2,3$ and 10 for examples. The rule is:

$$
\begin{align*}
& \left.N_{p a(1000200 \text { dngp })}=B_{p(90009000 \mathrm{ng})}+J_{10001000 \mathrm{ngp}}\right) \tag{26.2}\\
& +J_{(94991000999)}+N_{p b}(1000900 d 999)+D_{(9499200)}
\end{align*}
$$

[^8]The first construct noun is madatory and its attributes of number, gender, and person are dependent variables; it cannot be compounded. The second construct noun is optional, and may be compounded after Pattern 4. Attributes of number, gender, and person are independent variables. This structure permits an unlimited sequence of construct nouns.

Example:
BTY MLK YSRAL---the houses of the king of Israel
The deep structure derivation of the relationship of J with the word that follows it is:
$V_{g}=$ Subject governs object by genitive relationship.

This derivation may be repeated to produce strings of J such as

$$
J_{1}+J_{2}+J_{3}+\ldots+J_{n}+N_{1}
$$

In this case the range of the remote J governs the range of the near J, as follows:

$$
\left(J_{1}\left(J_{2}\left(J_{3} \ldots\left(J_{n}\left(N_{1}\right)\right)\right)\right)\right)
$$

The number phrase $\left(B_{p}\right)$ is optional, but, if present, it must agree in. number and gender. It cannot be compounded, and does not require the definite article. The simple noun phrase ($N_{p b}$) is mandatory and its attribute of definiteness is a dependent variable; but number, gender, and person are independent variables. The locative adverb is optional.

Example:
SLWST BTY MLK YSRAL SM---Lhe three houses of the kink of Israel thene

This construction also permits adjectives which modify the construct noun (J) to appear in the simple noun phrase (N_{pb}). But these tend to be ambiguous.

Example:

> SLWST BTY HMLKYM. HGDWLYM---three big houses of the kings, or three houses of the great kings

The deep structure derivation of this constituent is as follows:

In class 3, a definice number phrase (B_{c}) stande in place of a nound phrase, in which case the number may be definite. If the phrase is definite the first number of a sequerice has the definite article.

Example:

> HSLWSYM WORBH OLW LYRWSLM---the thirty-four went up to Jexusalem

The rule is:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{pa}(1000300 \mathrm{dngp})}=\mathrm{B}_{\mathrm{c}(1000900 \mathrm{dng})} \tag{26.3}
\end{equation*}
$$

The definfte number phrase $\left(B_{C}\right)$ is defined in Section 2.2.3.5.37.

2.2.3.5.24 The Appositional Noun Phrase (N_{pc})

The appositional noun phrase is used in the appositional phrase. There is one class of this phrase consisting of a regular noun phrase that may be compounded after Pattern 2. The rule is:

$$
\begin{equation*}
N_{p c}(1000100 \mathrm{dngp})=N_{\mathrm{pa}}(1299919 \mathrm{dngp}) \tag{27.1}
\end{equation*}
$$

Attributes d, n, g, and p are dependent variables.
The use of this phrase enables the construction of appositional phrases that agree with the associated noun phrase in number, gender, and person, and that have complete freedom of permutation within these limitr. For example, it enables the construction of the phrase

HYLDYM, AWRY WDN---the boys, Uri and Dan
where the plural noun phrase (the boys) is modified by the plural appositional phrase (Uri and Dan) which is made up of two singular proper nouns. See sentence A for an example of this phrase.

2.2.3.5.25 The Appositional Phrase (N_{ap})

The appositional phrase may follow a regular noun phrase (N_{pa}) to further modify it. There are three classes of this phrase. Class ${ }^{\text {pa }}$ 1 consists of an appositional noun phrase (N_{pc}) set off by commas. See sentence A for an example.

Example:
HYLD, AWRY,---the boy, Uri

The rule is:

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{ap}(1000100 \text { dnge })}=\mathrm{T}_{(10003)}+\mathrm{N}_{\mathrm{pc}(1399119 \mathrm{dngp})} \\
& \quad+\mathrm{T}_{(10003)}
\end{aligned}
$$

The appositional noun phrase ($N_{p c}$) may be compounded after Pattern 3. Attributes d, n, g, and p are dependent variables.

Class 2 consists of a prepositional phrase (X_{p}). See sentences
1 and 101 for examples.
Ex:ciple:
HYLD BBYYT---the boy in the house
The rule is:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{ap}(2.000200 \mathrm{dngp})}=\mathrm{X}_{\mathrm{p}}(149990900009) \tag{28.2}
\end{equation*}
$$

Compounding is permitted after Pattern 1. Attribute r is an independent attribute.

Class 3 consists of a relative clause. See sentencer 10, 11 and 12 for examples.

Example:
HYLD ASR BA---the boy who came
The rule is:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{ap}(1000300 \mathrm{dngp})}=\mathrm{R}_{\mathrm{g}(1199909 \mathrm{dngp})} \tag{28,3}
\end{equation*}
$$

Compounding is permitted after Pattern 1. Attributes d, n, q, and p are dependent variables.
2.2.3.5.26 The General Noun Phrase $\left(N_{p}\right)$

The general noun phrase consists of the regular noun phrase and an optional appositional phrase. There is only one class of this symbol. The rule is:

$$
\begin{equation*}
N_{p(1000100 \text { dngp })}=N_{p a(1000900 d n g p)}+N_{\mathrm{ap}}(90009002 \mathrm{ngp}) \tag{29.1}
\end{equation*}
$$

Attributes d_{3}, n, g, and p are dependent variables.

The appositional phrase is always definite. Compounding is not permitted for either noun phrase. From this one phrase all possible noun phrase constructions are made. All example sentences contain illustrations of this phrase.
2.2.3.5.27 This section is not used.
2.2.3.5.28 This section is not used.
2.2.3.5.29 This section is not used.
2.2.3.5.30 The Adverb Phrase (D_{p})

The adverb phrase often is used to modify a verb. A few adverbs may modify a noun phrase, and a few adverbs may be used to modify adjectives or other adverbs. Reference is made to the section describing terminal symbols for a discussion of adverbs.

It appears that members of different adverb classes may stand together without connecting words or functuation, but members of the same class must have a connecting conjunction between them.

Examples:
MLAH MAWD SM HYWM---very fuzz there today
but: HNH WSM ---here and there
The adverb phrase is not negated, but individual constituent adverbs may be negated with a Class 1 negative (LWA). There are five classes of the adverb phrase. Class 1 is the temporal adverb phrase which expresses time relationship and modifies verbs only. It consists of a sequence of temporal adverbs. The rule is:

$$
\begin{equation*}
D_{p(1000100)}=D_{(1199119)} \tag{33.1}
\end{equation*}
$$

The adverb may be compounded after Pattern 1.
Example:
ATMWL, HYWM, WMXR---yesterday, today, and tomorrow
Class 2 is the locative adverb phrase which expresses spatial relationship and modifies verbs and noun phrases. It consists of a sequence of locative adverbs. The rule is:

$$
\begin{equation*}
D_{p(1000200)}=D_{(1199219)} \tag{33.2}
\end{equation*}
$$

The adverb may be compounded after Pattern 1.
Example:

> YSB SM----he sat there
> HYLD SM--the boy there

Class 3 consists of the qualitative adverb phrase. The rule is:
$D_{p(1000300)}=D_{(1199319)}$
(33.3)

Class 4 is the intensity adverb phrase. Adverbs of intensity may modify adjectives and themselves.

Examples:
@WB MAWD----very good
HRBH MAWD---vexy much
MAWD MAWD---very much
The present phrase covers the last example only. The others are included in their respective rules. See sentence 5 for an example of this phrase. The rule is:

$$
\begin{equation*}
D_{p(1000400)}=D_{(1000419)}+D_{(9000400)} \tag{33.4}
\end{equation*}
$$

Further compounding of this phrase seems unlikely.
Class 5 consists of a prepositions1 phrase that answers the question when, where, or how. further research is required to define this relationship. For the present the following rule covers the situation. See sentence 10 for an example.

$$
\begin{equation*}
D_{p(10005000)}=X_{p(119990 y 00009)} \tag{33.5}
\end{equation*}
$$

2.2.3.5.31 The Basic Participle Phrase (E_{a})

The participle is a verbal noun that may stand in place of a noun in many constructions. As a noun, the participle may take the definite article. As a verb, it expresses the present tense and α. es not take the definite article. This phrase is used to define the structure of the definite and indefinite participle. There is one class of this phrase. For the indefinite participle the rule is:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{a}(100010 y d n g p r a v 00 \mathrm{sw})}=\mathrm{E}_{(100011 \text { y0ngprav00sw }), \mathrm{d} \neq 2} \tag{34.1}
\end{equation*}
$$

For the definite participle the rule is:

$$
\begin{equation*}
\left.E_{a(100010 y 2 n g p r a v 00 s w}\right)=H_{(100011 y)}+E_{(10001000 \text { ngprav00sw }} \tag{34.2}
\end{equation*}
$$

See sentences $A, 403$, and 26A for examples.
2.2.3.5.32 The Verb-Mood Phrase (V_{b})

Modern Hebrew has three verbal moods: indicative, imperative, and subjunctive. The indicative and imperative have their own distinctive inflectional forms but the subjunctive mood has lost its distirctive form and appears identical to the indicative future tense. However, there are structural distinctions which identify certain occurrences of the subjunctive mood.

The verb-mood phrase has one class that produces the atructure of: (1) the Indicative Verb-Mood Phrase, (2) the Imperative Verb-Mood Phrase, and (3) the Subjunctive Verb-Mood Phrase. Most example sentences illustrate the use of this phrase.

The Indicative Mood of verbs may appear in any tense, number, and person. It takes a Class 1 negative (LWA) and it requires no auxiliary constituents to identify it. The rule is:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{b}(100010 y 0 n g p r a v 1 t s w)}=\mathrm{V}_{(100011 y 0 n g p r a v 1 t s w)} \tag{35.1}
\end{equation*}
$$

The Imperative Mood has retained its distinctive inflectional form in modern Hebrew. It appears only in sccond person conjugations and takes a Class 1 negative (LWA). Imperative verb phrases are used in imperative sentences (See Section 2.2.3.5.76). The rule is:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{b}(100010 y 0 n g 2 r a v 22 \mathrm{sw})}=\mathrm{V}_{(100011 y 0 n g 2 r a v 22 \mathrm{sw})} \tag{35.2}
\end{equation*}
$$

The Infinitive Absolute may also serve as an imperative. In this construction the Infinitive Absolute takes a Class 1 negative (LWA) and it may govern a verb modifying phrase. The rule is:

$$
\begin{equation*}
\overline{\mathrm{V}}_{\mathrm{b}(100010 y 0 n g 2 r a v 22 \mathrm{sw})}=\mathrm{W}_{(100011 y 0000 r a v 00 \mathrm{sw})} \tag{35,3}
\end{equation*}
$$

The Subjunctive Mood as considered here covers all three persons and includes in a rather general way the cohortative and jussive of Classical Hebrew. The subjunctive mood has lost its distinctive inflectional form in modern Hebrew and it usually appears identical to the future tense. However, it retains two structural distinctions which identify the subjunctive mood in certain cases: (1) the particle NA following a future tense verb (either indicative or imperative) signifies a subjunctive mood. The particle $N A$ also changes an imperative to the force of a subjunctive mood. (2) The negative $A L$ preceding a future tense indicative verb signifies a subjunctive mood. The negative $A L$ never precedes an imperative form. Other subjunctives are indiscinguishable from a future tense indicative verb. The treatment of subjunctives at this level does not include verb modifying phrases. These are covered in a later section. The structure of the subjunctive verb phrase is

$$
\begin{align*}
& \mathrm{V}_{\mathrm{b}(100010 y 0 n g p r a v 32 \mathrm{sw})}=\mathrm{V}_{(100014 \text { yOngprav12sw })} \tag{35.4}\\
& +U_{\left.(10002)^{\sim}\right)} \\
& \mathrm{V}_{\mathrm{b}(10001000 \text { ngprav32sw) }}=\mathrm{V}_{(10001000 \text { ngprav22sw) }} \tag{35.5}\\
& +U(1000200) \\
& \mathrm{V}_{\mathrm{b}(10001010 \text { ngprav32sw) }}=\mathrm{V}_{(10001410 \text { ngprav22sw) }} \\
& \text { (35.6) } \\
& \text { Rule (} 35.4 \text {) states that a subjunctive mood future tense verb } \\
& \text { is represented by the future tense indicative inflection of the verb } \\
& \text { followed by the particle } N A \text {; the negative is expressed by the Class } 4
\end{align*}
$$ negative $A L$.

Example:
TBWA NA------please come
AL TBWA NA---please do not come
Rules (35.5) and (35.6) state that an alternative representation of the subjunctive mood future tense verb is the imperative inflection of the verb followed by the particle NA for positive statements or the imperative inflection of the verb preceded by the Class 4 negative $A L$ for negative statements.

Examples:
BWA NA------please come
AL BWA------please do not come
but not: *AL BWA NA---please do not come

2.2.3.5.33 The Three-Tense Verb Phrase (V_{bb})

Hebrew has three tense inflections for the verb. The past tense is expressed by the inflection known as the perfect tense in classical Hebrew. The future tense is expressed by the inflection known as the imperfect tense in classical Hebrew. The present tense does not have a distinct tense inflection; it is expressed by the participle (E). This phrase with the appropriate emphatics and auxiliaries is used to express the seven tenses of modern Hebrew. See sentences A and 4 for iliustrations of this phrase. The rules are:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{bb}(100010 y \text { Ongpravitsw) }}=\mathrm{V}_{\mathrm{b}(100010 y \text { Ongpravitsw) }} \mathrm{t}=1,2 \\
& \mathrm{~V}_{\mathrm{bb}(100010 y \text { Ongpravi } 3 \mathrm{sw})}=\mathrm{E}_{\mathrm{a}(100010 y \text { lngpravo0sw }}^{\text {(36.1) }} \tag{36.2}
\end{align*}
$$

Example:

KTBH-----she wrote
YKTWBW---they will write
KWTBYM---(they) are writing

2.2.3.5.34 The Emphatic Verb Phrase $\left(V_{c}\right)$

Classical Hebrew verbs have three states of emphasis: (1) emphasis of certainty, (2) emphasis of duration, and (3) no special emphasis. This phrase expresses these three states of emphasis. These states of emphasis are expressed by modifying the three-tense verb phrase ($\mathrm{Vbb}_{\mathrm{b}}$) with an Infinitive Absolute (W) of the same root and stem. The Infinitive Absolute, when used in this construction, is known as a Cognate Infinitive. This construction is not used in modern Hebrew. There are three classes of the emphatic verb phrase.

Class 1 expresses emphasis of certainty and consists of a Cognate Infinitive immediately before the finite verb.

Examples:
SMWR SMR------he surely kept
SMWR YSMWR----he surely will keep
the rule is:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{c}(100010 y 0 n g p r a v i t s w)}=\mathrm{W}_{(10001000000 \text { rav00sw })} \tag{37.1}\\
& \quad+\mathrm{V}_{\mathrm{bb}(100010 y 0 n g p r a v i t s w), t} \leqq 3
\end{align*}
$$

Class 2 expresses emphasis of duration and consists of a Cognate Infinitive immediately following the finite verb.

Example:
SMR SMWR-----he continually kept YSMWR SMWR--he will continually keep
the rule is:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{c}(100020 y 0 n g p r a v i t s w)}=\mathrm{V}_{\mathrm{bb}(100010 y 0 n g p r a v i t s w)} \tag{37.2}\\
& +\mathrm{W}_{(20001000000 \text { rav00sw }), t \leqq 3}
\end{align*}
$$

Class 3 expresses no special emphasis and contains a finite verb only, no Cognate Infinite. Most example sentences contain illustrations of this phrase. The rule is:

$$
\begin{equation*}
\mathbf{v}_{\mathbf{c}(100030 \text { yongpravitsw })}=\mathrm{V}_{\mathrm{bb}}(100010 \text { yOngpravitsw }), t \llbracket 3 \tag{37.3}
\end{equation*}
$$

In this phrase, attributes r, a, v, s, and w are dependent variables for both verb and infinitive. This is the only phrase that requires agreement of stem (s) and root (w) for its constituents. In addition, attributes n, g, p, i, and t are dependent variables for the verb. No compounding is permitted.

The Cognate Infinitive does not take a negative. The negative, when present, precedes the verb.

Examples:
SMWR LWA SMR------he surely did not keep LWA YSMWR SMWR----he will not continually keep

The Cognate Infinitive may modify a verb of any mood and of past, present, or future tense inflection. Note, however, that the Cognate Infinitive may appear in a verb phrase of any tense when accompanied by the appropriate auxiliaries.

Examples:

SMWR SMR---------he	surely kept (past tense)
SMWR YSMWR-------he	surely will keep (future tense)
SMWR SWMR--------he	surely is keeping (present tense)
HYH SMWR SWMR----he	surely was keeping (past past continuous)
YHYH SMWR SWMR---he	surely witl continue keeping future continuous)
MS-SMWR SMR------ $-\alpha f$	ter he had surely kept luperfect)
LKS-SMWR YSMWR---af	ter he will have surely kept future perfect)

These additional tenses are generated at a higher structural level defined in the next section.

2.2.3.5.35 The Seven-Tense Verb Phrase ($V_{a a}$)

Hebrew has seven verbal tenses but only three tense inflections. Three tenses are expressed by the three tense inflections of the verb without auxiliary words. The remaining tenses are expressed by the three tense inflections with auxiliary words. This phrase converts the seven verbal tenses into their corresponding inflectional tense plus any required auxiliary. Most example sentences contain illustirations of this constituent. There is one class of this phrase. The past, present, and future verbal tense are expressed by an emphatic verb phrase ($V \mathrm{c}_{\mathrm{c}}$) of the same tense. The rule is:

$$
\mathrm{v}_{\mathrm{aa}(100010 y \text { Ongpravitsw) }}=\mathrm{v}_{\mathrm{c}(100090 y \text { Ongpravitsw) }}, \mathrm{t} \leqq 3 \text { (38.1) }
$$

Examples: KTB--he wrote (past, non-emphatic)
KTWB YKTWB--he surely wizl write (future, emphatic)
KWTB--he is writing (present, non-emphatic)
The past continuous verbal tense is expressed by the past tense (non-emphatic) of the auxiliary copulative verb (HYH) plus a present tense emphatic verb phrase (V_{c}). The rule is:

$$
\begin{aligned}
& \left.V_{\text {aa }(100010 y 0 n g p r a v i 4 s w)}=V_{c(100030 y 0 n g p 01 v i}(12, H Y H *)\right) \\
& \quad+V_{c(10009000 n g p r a v i 3 s w)}
\end{aligned}
$$

Example: HYH KWTB--He was writing
The past continuous tense is not used in classical Hebrew.
The future continuous verbal tense is expressed by the future tense (non-emphatic) of the auxiliary copulative verb (HYH) plus a present tense emphatic verb phrase (V_{c}). The rule is:

$$
\begin{aligned}
& \mathrm{V}_{\text {aa }(100010 y \text { Ongpravi5sw) }}=\mathrm{V}_{\mathrm{c}(100030 y \text { Ongp01vi2 }}(12, \text { HYH*) }) \\
& \quad+\mathrm{V}_{\mathrm{c}(10009000 \text { ngpravi3sw) }}
\end{aligned}
$$

Examples: YHYH KWTB--he will continuously write YHYW KWTBYM--they will continuously write

The future continuous tense is used in Mishnaic Hebrew only.
The pluperfect verbal tense is expressed by the adverb MS (see Section 2.2.2.4.4, note at end) plus a past tense emphatic verb phrase $\left(V_{c}\right)$. The negative, when it occurs, appears before the adverb. The rule is:

$$
\begin{align*}
& V_{a a(100010 y 0 n g p r a v i 6 s w}=D_{(100071 y)} \tag{38.4}\\
& \quad+V_{c(10009000 n g p r a v i l s w)}
\end{align*}
$$

Example: MSKTB--after he had written
The pluperfect tense is used in subordinate clauses only.
The future perfect verbal tense is expressed by the adverb LKS with a future tense emphatic verb phrase (V_{c}). The negative, when it occurs, appears before the adverb. The rale is:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{aa}}(100010 y \text { Ongpravi } 7 \mathrm{sw})=D_{(100061 \mathrm{y})} \tag{38.5}\\
& \left.\quad+\mathrm{V}_{\mathrm{c}(10009000 \text { ngpravi2sw }}\right)
\end{align*}
$$

Example: LKSYKTWB--after he will have written
. WKikn
The future perfect tense is used in subordinate clauses only.
For the special case of present tense, active voice, indicative mood of the copulative verb ($t=3, v=1, i \equiv 1, a=1$) the copulative is omitted. See sentence lDD for an illustration of this phase. The rule is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{aa}(10001000 \mathrm{ngpr} 1113 \mathrm{sw})}=* \tag{38.6}
\end{equation*}
$$

For the special case of present tense, active voice, indicative mood, third person of the copulative verb $(t=3, v=1, i=1, p=3, a=1$) the copulative may be ifeplaced by a subject pronoun. See sentence IDDD for an illustration of this phrase. The rule is:

$$
\begin{equation*}
V_{\text {ea(} 10001000 \mathrm{ng} 3 r 1113 \mathrm{sw})}=\mathrm{R}_{(10002000 \mathrm{ng} 3)} \tag{38.7}
\end{equation*}
$$

2.2.3.5.36 The Verb Phrase (V_{a})

The verb phrase consists of a verb of any mood, tense, emphasis, number, gender, and person. However, Hebrew verbs do not have a distinct inflectional form for the dual number as in the case of nouns. The dual number for verbs takes the plural inflection of the verb. This phrase converts the dual number into the plural for verbs. Most example sentences contain illustrations of this constituent. The rules are:

$$
\begin{gather*}
\mathrm{V}_{\mathrm{a}(100010 y \text { Ongpravitsw })}=\mathrm{V}_{\mathrm{aa}(100010 y 0 n g p r a v i t s w)}, \mathrm{n} \neq 2 \tag{39.1}\\
\mathrm{~V}_{\mathrm{a}(100010 y 02 \text { gpravitsw })}=\mathrm{V}_{\mathrm{aa}(100010 y 03 \text { gpravitsw })} \tag{39.2}
\end{gather*}
$$

2.2.3.5.37 The Definite Number Phrase (B_{c})

In certain contexts a number phrase may have the attribute of definiteness, in which case the definite article precedes the number phrase. There are two classes of this phrase. Class 1 is for indefinite number phrases. The rule is:

$$
\begin{equation*}
B_{c(1000100 d n g)}=B_{p(10009000 n g)}, d \leqq 1 \tag{40.1}
\end{equation*}
$$

Class 2 is for the definite number phrase. The rule is:

$$
\begin{equation*}
\mathrm{B}_{\mathrm{c}(10002002 \mathrm{ng})}={ }^{H}(1000100)+\mathrm{B}_{\mathrm{p}(10009000 \mathrm{ng})} \tag{40.2}
\end{equation*}
$$

See Section 2.2.3.5.23 in the material on Rule (26.3) for the use of this phrase and an illustration.
2.2.3.5.38 The Prepositional Phrase (X_{p})

Prepositional phrases consist. of a preposition (P) followed by a noun phrase or its equivalent. There are three classes of this phrase. Class 1 is the prepositional phrase containing a noun phrase (N_{p}). The rule is:

$$
\begin{equation*}
X_{P(100010 y 0000 r)}=P_{(100011 y 0000 r)}+N_{p(11991009999)} \tag{41.1}
\end{equation*}
$$

Example: AL HBYYT--to the house

Attributes y and x are dependent variables. The preposition carries the negation, when present, with a Class 1 negative (LWA); it may not be
compounded. The noun phrase may be compounded after Pattern 1 ; its attributes k, c, d, n, g, and p are independent variables.

A special variation of Class 1 is the prepositional phrase consisting of a noun followed by a Class 7 particle (H-locative particle). This particle implies "motion toward" and has the force of a preposition.

Example: OLH YRWSLYMH--he went up to Jexusalem
(equivalent of: OLH LYRWSLYM)
OLH HOYRH--he went up to the oity
The rule is:

$$
\begin{equation*}
X_{p(100010 y 0000 r}=N_{a(100091 y 2999)}+U_{(1000700)}, x=1,6 \tag{41.2}
\end{equation*}
$$

In this case the moun must be definite. See sentences $A, 1,2,3$, etc., for examples.

The noun is not compounded or modified. It is limited to nouns of place, but presently no semantic descriptors distinguish such nouns in this grammar. When semantic descriptors are adapted to this grammar, that limitation can be placed on the above rule.

Class 2 is the prepositional phrase containing a pronoun in place of the noun phrase. ${ }^{35}$ The rule is:

$$
\begin{equation*}
x_{p(100020 y 0000 r)} \equiv z_{(100010 y 0999 r)} \tag{41.3}
\end{equation*}
$$

Example: ALYHM--to them
attributes y and x are dependent variables. See sentence 23 for an example of this constituent.

Class 3 is the prepositional phrase containing a relative pronoun clause $\left(R_{g}\right)$ in place of the noun phrase. The rule is:

$$
\begin{equation*}
X_{p(100030 y 0000 r)}=P_{(100011 y 0000 r)}+R_{g(11999009999)} \tag{41.4}
\end{equation*}
$$

Example: AL ASR BWNH BTYM--to the one who buizds houses

[^9]Attributes y and r are dependent variables. The relative pronoun clause (R_{g}) is defined in Section 2.2.3.5.67; it may be compounded after Pattern 1 and its attributes k, c, d, n, g, and p are independent variables. The noun phrase and the relative pronoun ciause may be compounded after Pattern 1. This permits the omission of succeeding appearances of identical prepositions in a compound prepositional phrase.

Example: BBYYT, A\&L HO\&, WOL GBOH--in the house, by the tree, and on the hill
AL HAYS, HASH, WHYLDYM--to the man, woman, and chizdren
The first example illustrates a compounded prepositional phrase using different prepositions. This is accomplished by compounding the phrase at a higher structural level. The second example illustrates a compound preposition phrase using the same preposition. This is accomplished at this present level by compounding the noun phrase or relative clause.

2.2.3.5.39 The Direct Object Phrase (N_{0})

The Direct Object Phrase serves as the direct object of a verb. There are two classes of this phrase. Class 1 consists of the sign of the direct object (O) and a definite noun phrase (N_{p}). The rule is:

$$
\begin{equation*}
N_{o(100010 y 2 n g p)}=0_{(100011 y)}+N_{p(10001002 n g p)} \tag{42.1}
\end{equation*}
$$

Example: AT HYLDYM H@WBYM--the good chiZdren
No compounding is permitted. Negation is carried by the sign of the direct object (0). The noun phrase (N_{p}) is aiways definite, and its attributes n, g, and p are dependent variables. See sentences $A, 6$, 8 , and 12 for examples of this constituent.

Class 2 consists of the sign of the direct object (0) and a definite relative clause $\left(R_{g}\right)$. The rule is:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{o}(100020 \mathrm{y} 2 \mathrm{ngp})}=\mathrm{o}_{(10001 \mathrm{y})}+\mathrm{R}_{\mathrm{g}(10009002 \mathrm{ngp})} \tag{42.2}
\end{equation*}
$$

This phrase does not include the direct object pronoun phrase (R_{0}) which has different syntactic structures.

Example: AT SAKL AT HTPWX--the one who ate the apple

2.2.3.5.40 The Copulative Adverb Phrase (D_{pd})

Adverbs of Class 1 a.ıd 2 may appear in the predicate position of copulative sentences. There are two classes of this phrase. Class 1 consists of a Class 1 adverb (temporal). The rule is:

$$
\begin{equation*}
D_{\text {pd }(100010 y)}=D_{(119911 y)} \tag{43.1}
\end{equation*}
$$

Example: HHG HWA HYWM--the hotiday is today
Class 2 consists of a Class 2 adverb (locative). The rule is:

$$
\begin{equation*}
D_{\text {pd }}(100020 y)=D_{(119921 y)} \tag{43.2}
\end{equation*}
$$

Example: HBYYT HYH SM--the house was there
Compounding is permitted after Fattern 1. Negation, when present, uses a Class 1 negative (LWA).
2.2.3.5.41 The Subject Pronoun Phrase ($R_{s p}$)

The subject pronoun phrase may serve as the subject of a verb. There are two classes of this phrase. Class 1 consists of a subject pronoun and an optional appositional noun phrase (N_{pc}). The rule is:

$$
\begin{equation*}
\left.R_{s p(10001002 n g p}\right)=R_{(10002000 n g p)}+N_{p c}(93991002 n g p) \tag{44.1}
\end{equation*}
$$

Example: ANY DWD HMLK--I David the king
Attributes n, g, and p are dependent variables. The appositional noun phrase (N_{p}) may be compounded after Pattern 3, and it is always definite. See sentences $2,4,5$, and 6 for examples.

Class 2 consists of a demonstrative pronoun. The rule is:

$$
\begin{equation*}
\mathrm{R}_{\mathrm{sp}(10002002 \mathrm{ngp})}=\mathrm{R}_{(12991000 \mathrm{ngp})} \tag{44.2}
\end{equation*}
$$

Attributes n, g, and p are dependent variables. Compounding is permitted after Pattern 2. Negation does not occur at this structural level.
2.2.3.5.42 The Subject Phrase ($N_{\text {sp }}$)

The subject phrase serves as the subject of a verb. There are four classes of this phrase. Class 1 consists of a noun phrase (N_{p}). The rule is:

> 荧思 2-92

$$
\begin{equation*}
\mathrm{N}_{\mathrm{sp}}(1000100 \mathrm{dngp})=\mathrm{N}_{\mathrm{p}(1299100 \mathrm{dngp})} \tag{45.1}
\end{equation*}
$$

Example: SNY YLDYM @WBYM--two good boys
Attributes d, n, g, and p are dependent variables. Compounding is after Pattern 2. Negation is not permitted at this level; when it occurs, it takes place at a higher or lower structural level. See sentences A, 1, 3 , and 23 for examples.

Class 2 consists of a subject pronoun phrase (R_{sp}). The rule is:

$$
\begin{equation*}
N_{s p(1000200 d n g p)}=R_{s p(12999002 n g p)} \tag{45.2}
\end{equation*}
$$

Example: ANY SAWL MLK YSRAL-I Saul king of IsraeZ
All members of this class are definite $(d=2)$. Attributes n, g, and p are dependent variables. Compounding is after Pattern 2. No negation is permitted at this structural level. See sentences $2,4 \mathrm{~s} .5$, and 8 for examples.

Class 3 consists of a subject-object dependent clause (K_{n}) which is defined in Section 2.2.3.5.68. This clause has the general form
(the fact) that S
where S is a sentence. The rule is:

$$
\begin{equation*}
N_{s p}(10003002113)=K_{n(1000900)} \tag{45.3}
\end{equation*}
$$

Here the attributes are limited to third person, masculine, singular, definite. No compounding is permitted. .

Class 4 consists of an infinitive construct phrase (N_{v}) which is defined in Section 2.2.3.5.54. This phrase, in general, consists of an infinitive construct and its object, if any.

Example: LAKWL TPWX--to eat an apple
The rule is:

$$
\begin{equation*}
N_{s p(1000400 d 113)}=N_{v}(1000900000099) \tag{45.4}
\end{equation*}
$$

The attributes are limited to third person, masculine, singular. No compounding is permitted at this level.

2.2.3.5.43 The Object Phrase ($N_{\text {op }}$)

The object phrase serves as the direct object of a verb. There are two classes of this phrase. In Class 1 the object is indefinite, it consists of a noun phrase (N_{p}). The rule is:

$$
\begin{equation*}
\mathbb{N}_{\text {op }(100010 y d n g p)}=N_{p(119910 y d n g p)}, d \neq 2 \tag{46.1}
\end{equation*}
$$

Example: STY YLDWT @WBWT--two good girls
Attribute y is a dependent variable. Attributes n, g, and p are independent variables. Compounding is after Pattern 1. See sentences 5, 10, and 11 for examples.

In class 2 the object is definite, it consists of a direct object phrase (N_{o}). The rule is:

$$
\begin{equation*}
\left.N_{o p}(100020 y 2 n g p)=N_{o(119990 y 2 n g p}\right) \tag{46.2}
\end{equation*}
$$

Example: AT HYLDYM H@WBYM--the good children
Attribute y is a dependent variable. Attributes k and c are independent variables. The attribute definite/indefinite is limited to the definite case ($d=2$). Compounding is after Pattern 1. See sentences $A, 6,8$, and 12 for example.

2.2.3.5.44 The Indirect Phrase (N_{ip})

The indirect phrase consists of those phrases which may serve as indirect object (or the equivalent) of a verb and which occupy the same structural position in a verb phrase. There are two classes of this phrase. In Class 1 the direct object is a noun, it consists of a prepositional phrase (X_{p}). The rule is:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{ip}(100010 y 0000 r)}=\mathrm{X}_{\mathrm{p}(119990 y 0000 r)} \tag{47.1}
\end{equation*}
$$

Example: LYLD H@WB--for the good boy
Attributes y and x are depengent variables, k and c are independent variables. Compounding is afteer Pattern 1. See sentence 10, 11 and 12 for examples.

In Class 2 the indirect object is an infinitive, it consists of an infinitive phrase (N_{v}) which is described in Section 2.2.3.5.56. The rule is:

$$
\begin{equation*}
N_{i p}(100020 y 0000 r)=N_{v}(119990 y 000099) \tag{47.2}
\end{equation*}
$$

Example: LAKWL AT HTPWX--to eat the apple
Attribute y is as dependent variable, attributes k, c, x, and α are independent variables. Compounding is after Pattern 1.

2.2.3.5.45 The Copulative Phrase ($N_{p x}$)

The copulative phrase serves as predicate in a copulative sentence, the general structure of which is

$$
N_{s p} \text { is } N_{p x}
$$

There are five classes of this phrase. Class 1 consists of an adjective phrase $\left(A_{p}\right)$. The rule is:

$$
\begin{equation*}
N_{p x(100010 y d n g p}=A_{p(119990 y 1 n g)} \tag{48.1}
\end{equation*}
$$

Example: YPH MAWD--vexy pretty
Attributes y, n, and g are dependent variables, k and o are independent variables. In this structure the adjective phrase is always indefinite. ($d=1$). Compounding is after Pattern l. See sentences 2 and 2a for examples. This class is used to generate kernel sentences of the form

$$
A\left(N_{E p}\right)=A_{p}
$$

which is interpreted " $N_{s p}$ possesses semantic dimension A the value of which is A_{p} "

Class 2 consists of a copulative adverb phrase (D_{pd}) . The rule is:

$$
\begin{equation*}
\mathrm{N}_{\mathrm{px}(100020 y \mathrm{dng} \mathrm{~g})}=\mathrm{D}_{\mathrm{pd}(149990 \mathrm{y})} \tag{48.2}
\end{equation*}
$$

Example: SM--there
Attributes \mathcal{K} and c are independent variables, y is a dependent variable. Compounding is after Patterin 4. This class is used to generate kernel sentences of the form $D\left(N{ }_{s p}\right)=D_{p d}$ which is interpreted "Nsp possess the (time/space) dimension of ${ }^{\text {sphe }}$ vaPde of which is $D \mathrm{D}^{\prime \prime}$ "

Class 3 consists of a noun phrase $\left(N_{p}\right)$. The rule is:

$$
\begin{equation*}
\left.N_{p x(100030 y d n g p)}=N_{p(129910 y d n g p}\right) \tag{48.3}
\end{equation*}
$$

Example: BWNH BTYM--a buiZder of houses
Attributes y, d, n, q, and p are dependent variables; k is an independent variable. Compounding is after Pattern 2. This class is used to generate kernel sentences of the form $N\left(N_{s p}\right)=N_{p}$, which is interpreted " N_{sp} possesses a name dimension the value of which is N_{p}." See sentence 1 for an example. At a lower structural level this nome dimension is more exastly defined.

Class 4 consists of a subject pronoun phrase (R_{sp}). The rule is:

$$
\begin{equation*}
N_{p x(100040 y d n g p)}=R_{s p(129990 y 2 n g p)} \tag{48.4}
\end{equation*}
$$

Example: AT--you (fem.)
Attributes y, n, g, and p are dependent variables, k and o are independent variables. Personal pronouns are definite ($\mathrm{d}=2$) by nature. Compounding is after Pattern 2. This class is used to generate kernel sentences of the form $\mathrm{N}_{\mathrm{sp}}=\mathrm{R}_{\mathrm{sp}}$ which is interpreted " N_{sp} is identical to R_{sp}."

Class 5 consists of a prepositional phrase (X_{p}). The rule is:

$$
\begin{equation*}
N_{p x(100050 y d n g p)}=x_{p(119990 y 00009)} \tag{48.5}
\end{equation*}
$$

Example: BGN HMLK--in the King's garden
Attributes k, c, and x are independent variables. Attribute y is a dependent variable. Compounding is after Pattern 1 . This class is used to generate kernel sentences of the form $D\left(N_{s p}\right)=X_{p}$ which is interpreted " $N_{s p}$ possesses the time/space/quality dimension the value of which is defined by $X_{p} . "$ See sentence 23 for an example.

2.2.3.5.46 Direct-Object Verb-Modifying Phrase ($V_{m a}$)

The direct-object verb-modifying phrase modifies Class 3 verbs. These verbs require a direct object which may be a pronominal suffix (R), a direct object pronoun phrase. (R_{O}), or an object phrase (Nop). The phrase also may have certain optional adverb phrases (D_{p}). There are three classes of this phrase. Class 1 consists of a pronominal suffix as the direct object. It is used in classical Hebrew only. The rule is:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{ma}(10001000 \mathrm{ngp} 03)}=\mathrm{R}_{(10003000 \mathrm{ngp})}+\mathrm{R}_{\mathrm{p}(9499909)} \tag{49.1}
\end{equation*}
$$

Example: (KTB)W SM--(he wrote) it there
In Class 2 the direct object is a pronoun phrase. It is used when the direct object has been previously named. The rule is:

$$
\begin{equation*}
V_{m a(10002000 n g p 03)}=R_{o(10001092 n g p)}+D_{p(9499909)} \tag{49.2}
\end{equation*}
$$

Example: (KTB)AWTM SM HYWM--(he wrote) them there today
See sentences $6 a$, and 10 for examples of the structure.
In Class 3 the direct object is named; the phrase consists of an object phrase. The rule is:

$$
\begin{aligned}
& V_{\operatorname{ma}(10003000 \mathrm{ngp} 03)} \Rightarrow \mathrm{D}_{\mathrm{p}(9499909)}+\mathrm{N}_{\mathrm{op}}(11999099 \mathrm{ngp}) \\
& \quad+\mathrm{D}_{\mathrm{p}(9499909)}
\end{aligned}
$$

Example: (KTB)AT HCPR SM-- (he wrote) the book there
See sentences A, 5, 6 and 8 for exan:les of the structure.
In all classes, there are no dependent variables. The adverb phrases, when present, may be sompounded after Pattern 4.

2.2.3.5.47 Indirect-Object Verb-Modifying Phrase (V_{mb})

The Indirect-Object Verb-Modifying Phrase modifies Class 4 verbs. These verbs require a direct object and an indirect object to complete their meaning. The direct object may be a pronominal suffix (R), a direct object pronoun phrase (R_{O}), or an object phase (Nop). The indirect object is an indirect phrase (N_{ip}). In addition the verb modifying phrase may contain optional adverb phrases (D_{p}). There are. three classes of this phrase. Class 1 is used in classical Hebrew when the direct object is previously named; the direct object is a pronominal. suffix. The rule is:

$$
\left.\begin{array}{l}
V_{m b}(10001000 \mathrm{ngpr} 4) \tag{50.1}\\
\quad=R_{(10003000 n g p)}+D_{p(9499909)} \\
\quad+N_{\mathrm{ip}}(11999090000 r)
\end{array}+D_{p(9499909)}\right)
$$

Example: (NTN)W LYLDH HYWM- -(he gave) it to the dix today
Class 2 is used when the direct object is previously named; the phrase has an object pronoun phrase as the direct object. See sentence 12 for an example of the structure. The rule is:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{mb}(10002000 \mathrm{ngpr} 4)}=\mathrm{D}_{\mathrm{p}(9499909)}+\mathrm{R}_{\mathrm{o}(11991092 \mathrm{ngp})} \tag{50.2}\\
& \quad+\mathrm{N}_{\mathrm{ip}(11999090000 r)}+\mathrm{D}_{\mathrm{p}(9499909)}
\end{align*}
$$

Example: (NTN) AWTM LYLDYM SM-- (he gave) them to the children there

Class 3 is used when the direct object is named; the phrase has an object phrase as the direct object. The rule is:

$$
\begin{align*}
& V_{\mathrm{mb}(10003000 \mathrm{ngpr} 4)}=\mathrm{D}_{\mathrm{p}(9499909)}+\mathrm{N}_{\mathrm{op}}(11999099 \mathrm{ngp}) \tag{50.3}\\
& \quad+\mathrm{N}_{\mathrm{ip}(11999090000 r)}+\mathrm{D}_{\mathrm{p}(9499909)}
\end{align*}
$$

See sentences 10 and 12 for examples. Attribute r is a dependent variabile; its value determines the preposition in N_{ip}. All other attributes are independent variables as indicated.

2.2.3.5.48 Discourse Verb-Modifying Phrase ($V_{m c}$)

The discourse verb-modifying phrase modifies Class 7 verbs and contains optional adverbs, direct object, and indirect objects, and a discourse clause (K_{d}). There are four classes of this phrase. Class 1 is used (classical Hebrew only) when the verb has a previously named direct object; the direct object is a pronominal suffix. The rule is:

$$
\begin{align*}
& V_{\operatorname{mc}\left(10001000 \mathrm{ngp}_{\mathrm{g}} 07\right)}=\mathrm{R}_{(10003000 \mathrm{ngp})}+\mathrm{D}_{\mathrm{p}(9499909)} \tag{51.1}\\
& \quad+\mathrm{K}_{\mathrm{d}(1199909)}
\end{align*}
$$

Class 2 is used when the verb has a previously named direct object: the direct object is an object pronoun. The rule is:

$$
\begin{align*}
& V_{m c(10002000 n g p 07)}=R_{o(11991092 n g p)}+D_{p(9499909)} \tag{51.2}\\
& \quad+K_{d(1199909)}
\end{align*}
$$

Class 3 is used when the verb has a direct object not previously named. The rule is:

$$
\begin{align*}
& \mathrm{V}_{\operatorname{mc}(10003000 \mathrm{ngp07})}=\mathrm{D}_{\mathrm{p}(9499909)}+\mathrm{N}_{\mathrm{op}(11999099 \mathrm{ngp})} \tag{51.3}\\
& \quad+\mathrm{D}_{\mathrm{p}(9499909)}+\mathrm{K}_{\mathrm{d}(1199909)}
\end{align*}
$$

See sentences $26 a, 26 b$, and $26 c$ for examples.
Class 4 is used when the verb has no direct object. The rule is:

$$
\begin{equation*}
\mathrm{v}_{\mathrm{mc}(10004000 \mathrm{ngp} 07)}=\mathrm{D}_{\mathrm{p}(9499909)}+\mathrm{K}_{\mathrm{d}(1199909)} \tag{51.4}
\end{equation*}
$$

In all classes, all attributes are independent variables. The adverb phrase, when present, may be compounded after Pattern 4, other symbols (except R and K_{d}) may be compounded after Pattern 1.

The syntax of discourse verbs should be studied further. Some verbs may govern an object with a preposition. This present classification does not define how discourse verbs gover an object.

2.2.3.5.49 Louble-Accusative Verb-Modifying Phrase ($V_{m d}$)

The double-accusative verb-modifying phrase modifies class 8 verbs and contains two accusatives. The first accusative may be a pronominal suffix (R), an object pronoun (R_{o}), or an object phrase (N_{op}); the second accusative is a noun phrase $\left(N_{p}\right)$. There are three classes of this phrase.

Class 1 is used (classical Hebrew only) when the verb has a previously named direct object; the direct object is a pronominal suffix. The rule is:

$$
\begin{align*}
& \mathrm{V}_{\text {md }(10001000 \mathrm{ngp0} 0)}=\mathrm{R}_{(10003000 \mathrm{ng})}+\mathrm{D}_{\mathrm{p}(9499909)} \tag{52.1}\\
& \quad+\mathrm{N}_{\mathrm{p}(11991099999)}+\mathrm{D}_{\mathrm{p}(9499909)}
\end{align*}
$$

Example:

OSM ZHB-----he made them of gold

Class 2 is used when the verb has a previously named direct object. The rule is:

$$
\begin{align*}
& V_{\text {md }(10002000 n g p 08)}=D_{p(9499909)}+R_{o(11991092 n g p)} \tag{52.2}\\
& \quad+N_{p(11991099999)}+D_{p(9490909)}
\end{align*}
$$

Example:
OSH AWTHM ZHB-----he made them of goZd
Class 3 is used when the verb has a direct object no previously named. The rule is:

$$
\begin{align*}
& V_{m d(10003000 n g p 08)}=D_{p}(9499909) \tag{52.3}\\
& \quad+N_{o p}(11999099 n g p) \\
& \quad+N_{p}(11991099999)+D_{p}(9499909)
\end{align*}
$$

Example: OSH AT HKRBYM ZHB---he made the chembim of goZd

In all classes, no attributes are dependent variables. The adverb phrases may be compounded after Pattern 4, all others (except R) may be compounded after Fattern 1.

2.2.3.5.50 The Verb Modifying Phrase (V_{m})

The verb modifying phrase modifies a verb, infinitive, or participle. There are eight classes of this phrase, one for each verb class.

Verb Class 1, copulative verbs, is modified $b_{;}$a copulative phrase $\left(\mathrm{N}_{\mathrm{px}}\right)$ and by optional adverb phrases. The rule is:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{m}(10001000 \mathrm{ngp} 01)}=\mathrm{D}_{\mathrm{p}(9499909)}+\mathrm{N}_{\mathrm{px}(11999099 \mathrm{ngp})} \tag{53.1}\\
& \quad+\mathrm{D}_{\mathrm{p}(9499909)}
\end{align*}
$$

Example:
(HWA) HYLD ASR AWKL TPWXYM SM---(he is) the boy who eats apples there

See sentences 1,2 , and 23 for examples of the structure. Attributes n, g and p are dependent variab?es; k, c, and y are independent yariables throughout. Attribute d is an independent variable for $N_{p x}$. The adverb phrases may be compounded after Pattern 4, the copulative phrase after Pattern 1.

Class 2 verbs (intransitive) require neither direct object nor indirect object. They may be modified by an optional adverb phrase. The rule is:

$$
\begin{equation*}
V_{m(10002000 n g p 02)}=D_{p(9490909)} \tag{53.2}
\end{equation*}
$$

Example:
(YSB) SM OL HKSA HYWM---(he sat) there on the chair today

See sentences 3 and 7 for examples of the structure.
Class 3 verbs (transitive) are modified by a direct object verb modifying phrase (V_{ma}). The rule is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{m}(10003000 \mathrm{ngp} 03)}=\mathrm{V}_{\mathrm{ma}(1000900099903)} \tag{53.3}
\end{equation*}
$$

For examples see Section 2.2 .3 .5 .46 , and sentences $A, 5,6$, and 8.
Verb Class 4 is modified by an indirect object verb modifying phrase ($V_{m b}$). The rule is:

$$
\begin{equation*}
V_{m(10004000 n g p r 4)}=V_{m b}(10009000999 r 4) \tag{53.4}
\end{equation*}
$$

For examples see Section 2.2.3.5.47 and sentences 11 and 12 . Attribute r is a dependent variable, its value determines the preposition associated with the indirect object.

Verb Class 5 takes a direct object with a preposition which contributes to the meaning of the verb. Thus the verb modifying phrase is a prepositional phrase (X_{p}). The rule is:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{m}(10005000 \mathrm{ngpr} 5)}=\mathrm{D}_{\mathrm{p}(9490909)}+\mathrm{X}_{\mathrm{p}(11999090000 r)} \\
& \quad+\mathrm{D}_{\mathrm{p}(9499909)}
\end{aligned}
$$

Example:
(SXQ) BKDWR HYWM---(he played) with the ball today
See sentences A, 4, 7, and 9 for examples of the structure.
Verb Class 6 requires an infinitive phrase (N_{v}) to complete the meaning. The verb modifying phrase consists of an infinitive phrase and optional adverb phrases and prepositional pronouns. The rule is:

$$
\begin{align*}
& V_{m(10006000 n g p 06)}=D_{p(9499909)}+P_{(100010000001)} \tag{53.6}\\
& \quad+N_{v(100090000099)}+D_{p(9499909)}
\end{align*}
$$

Example:
R\&YTY LIKT HBYTH--I wanted to go home
See sentences 5, 7, and 26a for examples of the structure.
Class 7 verbs are modified by a discourse verb modifying phrase $\left(V_{\mathrm{mc}}\right)$. The rule is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{m}(10007000 \mathrm{ngp} 07)}=\mathrm{V}_{\mathrm{mc}(1000900099907)} \tag{53.7}
\end{equation*}
$$

See sentences $26 a, 26 b$, and 26 c for examples of the structure.
Class 8 verbs are modified by a double accusative verb modifying phrase ($V_{m d}$). The rule is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{m}(10008000 \mathrm{ngp} 08)}=\mathrm{V}_{\mathrm{md}(1000900099908)} \tag{53.8}
\end{equation*}
$$

For examples see Section 2.2.3.5.49

Relative clauses contain a relative pronoun and a verb phrase. When the relative pronoun is the subject of the verb, the verb modifying phrase has the same structure as the regular verb modifying phrase $\left(V_{m}\right)$. But when the relative pronoun is the object of the verb the structure is different. The following sections describe the structure of objective relative clause verb modifying phrases. The key difference between the objective relative clause verb modifying phrase and the regular verb modifying phrase is that the former contains no direct object. There are five classes of this phrase, one for each applicable verb class. For verb Class 1 , the rule is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{mr}(10001000 \mathrm{ngp} 01)}=\mathrm{D}_{\mathrm{p}(9499909)} \tag{54.1}
\end{equation*}
$$

For verb Class 3, the rule is:

$$
\begin{equation*}
\mathrm{V}_{\operatorname{mr}(10002000 \mathrm{ngp} 03)}=\mathrm{D}_{\mathrm{p}(9499909)} \tag{54,2}
\end{equation*}
$$

See sentences 6 a and 10 for examples.
For verb Class 4, the rule is:

$$
\begin{equation*}
V_{\operatorname{mr}(10003000 \mathrm{ngp} 04)}=V_{\operatorname{ma}(10009000 \mathrm{ngp} 03)} \tag{54.3}
\end{equation*}
$$

For verb Class 5, the rule is:

$$
\begin{equation*}
\mathrm{V}_{\operatorname{mr}(10004000 \mathrm{ngpr} 5)}=\mathrm{D}_{\mathrm{p}(9499909)} \tag{54.4}
\end{equation*}
$$

For verb Class 8, the rule 1s:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{mr}(10005000 \mathrm{ngp} 08)}=\mathrm{V}_{\mathrm{mb}(10009000 \mathrm{ngp} 04)} \tag{54.5}
\end{equation*}
$$

Verb Classes 2, 6, and 7 do not take a direct object and are therefore not included in this phrase.

2.2.3.5.52 Indirect Relative Clause Verb Modifying Phrase ($V_{\text {mi }}$)

In relative clauses containing verbs that take an indirect object (Verb Class 4), the relative pronoun may represent the indirect object. For example:

SLW NTN AT HCPR
(Iiterally: who to him he gave the book) (translated: to whom hie gave the book)

The indirect relative clause verb modifying phrase modifies the verb in such relative classes. There are three classes of this phrase.

Class 1 is used when the verb of the relative clause has a previously named direct object (classical Hebrew only). The rule is:

$$
\begin{equation*}
V_{\operatorname{mi}(10001000 \text { ngpr } 4)}=R_{(10003000999)}+D_{p(9499909)} \tag{55.1}
\end{equation*}
$$

Example:
(SLHM NTN)W HYWM---(to whom(pl.) he gave) it today
Class 2 is used when the verb of the relative clause has a previously named direct object. The rule is:

$$
\begin{equation*}
\mathrm{V}_{\mathrm{mi}(10002000 \mathrm{ngpr} 4)}=\mathrm{R}_{\mathrm{o}(11991012999)}+\mathrm{D}_{\mathrm{p}(9499909)} \tag{55.2}
\end{equation*}
$$

Example:
(SLHM NTN) AWTM SM HYWM---(to whom (pl.) he gave) it there today

Class 3 is used when the verb of the relative clause has a direct object not previously named. The rule is:

$$
\begin{align*}
& \mathrm{V}_{\mathrm{mi}(10003000 \text { ne pr } 4)}=\mathrm{D}_{\mathrm{p}(9499909)}+\mathrm{N}_{\mathrm{Op}(11999099)} \tag{55,3}\\
& \quad+\mathrm{D}_{\mathrm{p}(9499909)}
\end{align*}
$$

Example:
(SLHM NTN) AT HCPR---(to whom (pl.) he gave) the book
See sentences ila and lld for examples of the structure. In all cases for this phrase, attributes n, g, and p are dependent variables.

2.2.3.5.53 Predicate Phrase (V_{p})

Predicate phrases serve as the predicate of a sentence. They consist of a single verb-tense phrase (V_{a}) and a verb modifying phrase $\left(V_{m}\right)$, either simple or compounded. An optional adverb phrase (D_{p}) may precede the verb. There is one class of this phrase with two rules. For phrases using verbs of Class 1 , the rule is:

$$
\begin{align*}
& V_{p(100010 y 0 n g p 01 v i t)}=D_{p(9499909)} \tag{56.1}\\
& \quad+V_{a(100010 y 0 n g p 01 v i t 99)}+V_{m(12999000 n g p 01)}
\end{align*}
$$

Example:
(HYLDYM) HYM YLD AXD WSLWS YLDWT---(the ohizdren) are a boy and three 5.2 ls

Attributes n, g, and p are dependent variables for both verb and verb modifying phrase; attributes y, v, i, and t are dependent variables for the verb. The verb is not compounded, but the verb modifying phrase may be compounded after Pattern 2 as illustrated above.

For phrases using verbs other than Class 1 , the rule is:

$$
\begin{align*}
& V_{p(100010 y 0 n g p r a v i t)}=D_{p}(9499909) \tag{56.2}\\
& \quad+V_{a(100010 y 0 n g p r a v i t 99)}+V_{m(11999000999 r a), a \neq 1}
\end{align*}
$$

Example:
YSB OL HKSA BBYYT SM---he sat on the ahair in the house there

In this case attributes y, n, g, p, v, i, and t are dependent variables for the verb only; attributes r and a are dependent variables for both the verb and the vexb modifying phrase (where a $\neq 1$). Attributes n, g, and p are independent variables for the verb modifying phrase, and the phrase $\left(V_{m}\right)$ may be compounded after Pattern 1. Illustrations of this constituent may be found in almost every example sentence.

2.2.3.5.54 Objective Relative Clause Verb Phrase (V_{rb})

In objective relative clauses the relative pronoun is the direct object of the verb and the verb modifying phrase has no direct object. These verb modifying phrases (V_{mr}) are described in Section 2.2.3.5.51. The rule for the objective relative clause verb phrase is:

$$
\begin{align*}
& V_{r b(100010 y 0 n g p r a v i t)}=V_{a(100010 y 0999 \text { ravit } 99)} \tag{57.1}\\
& \quad+V_{\text {inr }(11999090 \text { ngpra })}
\end{align*}
$$

See sentences $6 a$ and 10 for examples.
2.2.3.5.55 Indirect Re1ative Clause Verb Phrase ($V_{r i}$)

In indirect relative clauses, the relative pronoun is the indirect object of the verb and the verb modifying phrase has no indirect object. These verb modifying phrases (V_{mi}) are described in Section 2.2.3.5.52. The structure of the indirect relative clause verb phrase is

$$
\begin{align*}
& \mathrm{V}_{\mathrm{ri}(100010 y 0 n g \mathrm{pr} 4 \mathrm{vit})}=\mathrm{V}_{\mathrm{a}(100010 y 0999 \mathrm{r} 4 \mathrm{vit9})} \\
& \left.\quad+\mathrm{V}_{\mathrm{mi}(11999090 \mathrm{ngpr})}\right) \\
& \mathrm{V}_{\mathrm{ri}(100010 y 0 n g p r 5 \mathrm{vit})}=\mathrm{V}_{\mathrm{a}(100010 y 0999 \mathrm{r} 5 \mathrm{vit}} \tag{58.2}\\
& \quad+Z_{(11991090 \mathrm{ngpr})}
\end{align*}
$$

See sentences lia and, llc for examples of the structure.

2.2.3.5.56 Infinitive Construct Phrases (N_{v})

Infinitive phrases serte as verbal nouns. ${ }^{36}$ The infinitive emphasizes the deed rather than the doer, in contrast to the participle (verbal noun) which emphasizes the doer. The infinitive may have a named subject, and it must have a verb modifying phrase of the same class as the equivalent finite verb.

Example:
BYWM OSWT YHWH ALWHYM AR\& WSMYYM (Gen. 2:4)--In the day of Yahweh-God's making the earth and heavens

In the example, Yahweh-God is the named subject, and the object of the deed (making) is earth and heavens.

Infinitive phrases have the same attributes as nouns (number, gender, person), however, these attributes are all ambiguous for the infinite. The infinitive construct (Y) and the verb modifying phrase each have additional attributes, some of which are required to agree (class, and preposition class), but these attributes are not sensitive to the external context of the phrase. There are three classes of infinitive construct phrase: (1) the indefinite infinitive construct phrase, in which the subject is not named, (2) the pronoun suffix infinitive construct phrase, in which the subject is named by a pronominal suffix attached to the infinitive and (3) the definite infinitive construct phrase, in which the subject of the deed is named by a subject phrase ($N_{s p}$).

The infinitive construct phrase may serve in a noun phrase as outlined previously in Section 2.2.3.5.42. In this capacity the infinitive construct phrase may be found as subject of a verb, genitive of a construct noun (example above), and object of a preposition.

36 Further study should be made of the use of the infinitive construct in its use as subject of verbs, object of verbs, and object of prepositions.

Infinitive construct phrases are negated with a Class 3 negative (LBLTY) before the infinitive construct (Y).

In Class 1 the infinitive construct phrase has no named subject of the deed.

Example:
LWA ADO \&ar WBWA (I Kings 3:7)---I know not to go out or come in

The rule is:

$$
\begin{align*}
& N_{v}(100010 y 000 \mathrm{ra})=Y_{(100093 y 0000 \mathrm{ra})} \tag{59.1}\\
& \quad+\mathrm{V}_{\mathrm{m}(11999090999 \mathrm{ra})}
\end{align*}
$$

The infinitive must have a verb modifying phrase (V_{m}) which corresponds to the equivalent finite verb. In the above example, both infinitives are of class 2 which require no verb modifying phrase. An example of an infinitive phrase with a verb modifying phrase is

YMAN ADWM NTWN AT-YSRAL OBWR BGBWLW (Num. 20:21)--
Edom refused to give Israel passage through his border.
In this example, the first infinitive (to give) is Class 8 which requires a double accusative verb modifying phrase. In the second accusative a second infinitive (to pass) appears in place of a noun, which infinitive also requires a verb modifying phrase. For further examples see sentences 1, 7, and 26a.

In Class 2 the infinitive construct phrase has a named subject expressed by a pronoun suffix attached to the infinitive.

Example:
YDOTY AT HTRGZK ALY (Isaiah 37:28)---I know your raging against me.

The rule is:

$$
\begin{align*}
& N_{v(100020 y 0000 r a)}=Y_{(1000093 y 0000 r a)} \tag{59.2}\\
& \quad+F_{(10003000999)}+V_{m(11999090999 \mathrm{ra})}
\end{align*}
$$

In Class 3 the infinitive construct phrase has a named subject of the deed in the form of a subject phrase ($N_{s p}$).

Exemple:
LWA @WB HYWT HADM LBDW (Gen 2:18)---Man's being alone

The subject man is named in the phrase. The rule is:

$$
\begin{align*}
& N_{v(100030 y 0000 r a)}=Y_{(100093 y 0000 r a)} \tag{59.3}\\
& \quad+N_{3 p(11999099999)}+V_{m(11999090999 r a)}
\end{align*}
$$

The deep structure derivation of this constituent is as follows:

Note that the subject of the "kerna1" sentence is transformed from a nominative construction, that governs the verb, to a genitive construction governed by the infinitive construct. The transformation shifts emphasis from the subject of the action to the action itself.

2.2.3.5.57 The Infinitive Absolute Phrase (N_{w})

Infinitives absolute may serve as nouns ${ }^{37}$ while at the same time governing a direct or indirect object. An infinitive absolute phrase may serve as subject of a sentence.

Example:
AKWL TFWXYM IYA BRYA---eating apples is healthy
It may also serve as an object of $=$ verb.
Example:
ANY AWHB AKWL TPWXYM---I like eating apples
The infinitive absolute governs a verb modifying phrase (V_{m}). The rule is:

$$
\begin{equation*}
N_{w(100010 y 0000 \mathrm{ra})}=W_{(119903 y 0000 \mathrm{ra})}+V_{\mathrm{m}(10009000000 \mathrm{ra})} \tag{60,1}
\end{equation*}
$$

Negation is with a Class 3 negative (LBLTY), and the infinitive may be compounded after Pattern 1.

37
Further study should be made of the use of the infinitive absolute in its use as subject of verbs, object of verbs, and as imperatives. The use of the Infinitive Absolute Phrase is confined to Biblical Hebrew.

2.2.3.5.58 The Construct Participle Phrase ($E_{p b}$)

The construct parciciple governs its object in the genitive.
Example:

AWKLY TPWXYM-----eaters of apples

It does not appear that verbs which do not take an object will be used as a construct participle. Likewise, it does not appear that construct participles are used in verbal noun expressions requiring indirect objects or modifying prepositional phrases. Therefore, it seens that only transitive verbs (Class 3) may appear as construct participles, ${ }^{38}$ and these may appear only with a simple noun phrase as object. There are two classes of this phrase.

Class 1 is used when the participle has a named direct object. The rule is:
(61.1)

$$
E_{p b(100010 y d n g p r 31)}=G_{\left(119992 y \text { Ongp0 }^{2} 1\right)}+N_{p a(1.199909 \mathrm{~d} 999)}
$$

Attributes y, n, q, and p are dependent variables for the participle (G), and d is a dependent variable for the noun phrase (N_{pa}). The participle is limited to the active voice. Negation is expressed with a class 2 negative (AYN).

Class 2 is used when the participle has a previously named direct object. The rule is:

$$
\begin{equation*}
\mathrm{E}_{\mathrm{pb}(100020 y 2 n g \mathrm{pr} 31)}=\mathrm{G}_{(100092 \mathrm{y} 0 \mathrm{ngp} 031)}+\mathrm{R}_{(10003000999)} \tag{61.2}
\end{equation*}
$$

Example:
QW@LYHM-------theix kizZers
In this case the attributes are the same as above except that the phrase is always definite $(\mathrm{d}=2)$, and the pronoun may not be compounded.

For the deep structure derivation of this constituent, see Section 2.2.3.5.59

2.2.3.5.59 The Absolute/Construct Participle Phrase ($E_{p a}$)

The participle is a verbal noun and may serve the function of either a verb or a noun. As a verb it represents the pres nt tense and governs objects in the same pattern as a regular finite verb. In this capacity the participle always appeers in the ubsolute state, not in the construct. This verbal function of the participle is covered under

38 Class 4 and 5 verbs are found ir this construction also, but without the usual preposition following $\widehat{*}$.
the section on present tense verb phrases and is not under consideration here. This section deals with the use of the participle as a noun.

As a noun, the participle represents a person or thing as being in the exercise of an activity. The emphasis is on the doer rather than the deed, in contrast with the infinitive which emphasizes the deed. As a verbal noun, it may govern an object in the same manner as a verb.

Example:
HAWKLYM AT HTPWXYM-----Those eating the apples
However, for those verb classes which take a direct object, the construct state of the participle (G) may govern the object.

Example:
AWKLY HTPWXYM-----the eaters of the apples
These two examples illustrate the two classes of participle phrases, (1) the absolute participle phrase, and (2) the construct participle phrase.

The absolute participle phrase is nearly identical in structure with the present tense verb phrase. However, this phrase appears in place of a noun, and in that context it must have a verbal noun meaning. The present tense verb phrase has $i \leqslant s$ own structural context and meaning which cannot be confused with the participle phrase.

The participle phrase may stand in place of a noun (N). It may be either definite or indefinite.

Class 1 consists of an absolute participle phrase. The rule is:

$$
E_{p a(100010 y d n g p r a v)}=E_{a(100092 y d n g p r a v 009)}
$$

$$
\mathrm{V}_{\mathrm{m}(11999090999 \mathrm{ra})}
$$

Attributes y, d, g, and p are dependent variables for the participle (E); x and a are dependent variables for both the participle and the verb modifying phrase (V_{m}).

Class 2 consists of a construct participle phrase. The rule is:
$\mathrm{E}_{\mathrm{pa}(100020 \text { ydngpr31) }}=\mathrm{E}_{\mathrm{pb}(100090 \text { ydngpr } 31)}$

The deep structure derivation of this constituent is as follows:

2.2.3.5.60 The Participle Phrase (E_{p})

The participle phrase consists of an absolute/construct participle phrase. However, the participle does not have a dual inflection, therefore, a dual participle must be converted to the plural. The rules of of this section perform this conversion. The rules are:

$$
\begin{align*}
& \left.\mathrm{E}_{\mathrm{p}(100010 \mathrm{ydngp})}=\mathrm{E}_{\mathrm{pa}(100090 \mathrm{ydn}}^{\mathrm{g} p} \mathrm{p99}\right) \tag{63.1}\\
& , \mathrm{n} \neq 2 \tag{63.2}\\
& \mathrm{E}_{\mathrm{p}(100010 \mathrm{yd} 2 \mathrm{gp})}=\mathrm{E}_{\mathrm{pa}(100090 y d 3 \mathrm{gp} 999)}
\end{align*}
$$

2.2.3.5.61 The Possessive Independent Clause (S_{aa})

The possessive independent clause is an idiomatic construction for expressing possession. There are four classes of this clause. Class 1 consists of those clauses that emphasize the possessor. The rule is:

$$
\begin{aligned}
& S_{\text {aa(100010y0ngp00vit })}=X_{p(119990000001)} \\
& \quad+V_{a(10010 y 0 n g 01 v i t 99)}+N_{s_{p}(12999099 n g p)}+D_{p(9 i \& 9909),} \neq 3
\end{aligned}
$$

Example:
LYLDH HYH HCPR HYWM--the girz (!) had the book today
See seit zence 101c for an example of the structure.
Class 2 consists of those clauses that emphasize the thing possessed. The rule is:

$$
\begin{align*}
& S_{\text {aa(100020yC.isp01vit })}=N_{s p(12999099 n g p)} \tag{64.2}\\
& \quad+V_{a(100010 y 0 n g p 01 v i t 99)}+X_{p(119990000001)}+D_{p(9499909)}, \\
& \quad t \neq 3
\end{align*}
$$

Example:
HCPR HYH LYLDYM SM---the chitdren had the book (!) there
Class 3 consists of those clauses in which no emphasis is expressed. The rule is:

$$
\begin{aligned}
& S_{a a(1000030 y 0 n g p \text { OOvit })}=v_{a(100010 y O n g p 01 v i t 99)} \\
& \quad+X_{p(119990000001)}+N_{s p(12999099 n g p)}+D_{p(9499909)}, t \neq 3
\end{aligned}
$$

Example:
HYH LYLDWT CPR-----the gixZs had a book
In all cases the verb is the copulative. The possessor is expressed by X_{p} which may be compounded after Pattern 1 , and which is limited to the preposition $L(r=1)$. The thing possessed is expressed by $N_{s p}$ which may be compounded after Pattern 2 . Attributes $n_{s} g$, and p are dependent variables for the verb and the thing possessed ($N_{s p}$).

In the special case of fresent tense, active voice, indicative mood, the copulative is usually expressed by the particle YS or its negative AYN.

Examples:
(YS) LYLD TPWX ----the boy has an apple
AYN LYLDH CPR----the girl does not have a book
The rules are:

$$
\begin{align*}
S_{\text {aa(10004000ngp00113 }} & =U_{(9000300)} \tag{64.4}\\
\quad+X_{p(1,9990000001)} & +N_{s p(12999099 n g p)}+D_{p(9499909)} \\
S_{\text {aa(10004010ngp001113) }} & =L_{(100012)} \tag{64.5}\\
+X_{p(119990000001)} & +N_{S p(12999099 n g p)}+D_{p(9499909)}
\end{align*}
$$

The particle YS is optional, however it is usually used in common practice. See sentences lola and lolb for examples of the structure.

2.2.3.5.62 The Definite Independent Clause (S_{ab})

The Definite Independent Clause has a named subject within the structure of the clause.

Examples:
HYLD AKL AT HTPWX-----the bou ate the apple HYA AKLH AT HTPWX-----she ate the apple

The subjects (the boy, she) are named, thus the clause is called definite--because the subject is named, not because the subjects have the attribute of definiteness. The rule is:

$$
\begin{align*}
& S_{a b}(100010 y 0 n g p 00 v i t)=N_{s p}(12999099 n g p) \tag{65.1}\\
& \quad+V_{p(119990 y 0 n g p 99 v i t)}
\end{align*}
$$

Attributes n, g, and p are dependent variables for subject phrase and verb phrase; y, v, i, and t are dependent variables for the verb phrase only. The noun phrase may be compounded after Pattern 2 , the verb phrase after Pattern 1 . See sentences $A, 1,2$, and 4 for examples.

The above rule covers the general case for the definite independent clause. However, in the special case of the present tense, active voice, indicative mood, verb Class 1 (copulative), classical Hebrew only, the definite independent clause may be expressed with the word $Y S$ before the subject in positive declarations.

Example:
YS YHWH BMQWM HZH (Gen. 28:16)---The Lord is in this place

The rule is:

$$
\begin{aligned}
& \mathrm{c}_{\mathrm{ab}}(10002000 \mathrm{ngp} 00113)=\mathrm{U}_{(9000300)}+\mathrm{N}_{\mathrm{sp}}(10009009 \mathrm{ngp}) \\
& \quad+\mathrm{V}_{\mathrm{p}(11999000 \mathrm{ngp} 01113)}
\end{aligned}
$$

See sentence ldd, lddd and $2 \bar{b}$ for exal les of the structure.
Likewise, for $a Z Z$ verb classes of the above special case, for both modern and classical Hebrew, the negative definite independent clause is expressed with the Class 2 negative (AYN) before the subject.

Example:
AYN HYL.DWT YWSBWT OL HKCA---The girzs are not sitting *" on the chair

The rule is:

$$
\begin{align*}
& S_{z . b}\left(10003010 n_{g p} 00113\right) \tag{65.3}\\
&\left.=L_{(100012)}+N_{p(10001009 n g p}\right) \\
&+V_{p(11999000 n g p 99113)}
\end{align*}
$$

See sentence le for an example of the structure.
However, when the subject is a pronoun, it may be suffixed to YS ${ }^{39}$ and it is always suffixed to $A Y N$.

Examples:
YSK AWKL TPWX------You are eating an apple AYNYNY AWKL TP'X---I am not eating an apple

The rules are:

$$
\begin{align*}
& \left.S_{a b(10004000 n g p 00113)}=U_{(1000300)}=R_{(10003000 n g p)}\right) \\
& \quad+V_{p(11999000 n g p 99113)} \\
& S_{a b(10005000 n g p 00113)}=L_{(100012)}=R_{(10003000 n g p)} \tag{65,5}\\
& \quad+V_{p(11999000 n g p 99113)}
\end{align*}
$$

In modern Hebrew, for all verb classes of the above special case, where some emphasis is desired and the subject of the verb is named, $Y S$ or $A Y N$ appears before the verb with a pronoun suffix which is in col ord with the subject.

Examples:
HYLDWT YSNM YWSBWT OL HKCA--TThe girls are sitting on the chair
HYLDYM AYNM YWSBYM OL HKCA---The boys are not sitting on the chair

The rules are:

$$
\begin{align*}
& S_{a b(10006010 n g p 00113)}=N_{p(10001002 n g p)}+L_{(100012)} \tag{65.6}\\
& \quad+R_{(10003000 n g p)}+V_{p(11999000 n g p 99113)}
\end{align*}
$$

39 This structure is found in Biblical Hebrew, YSK MWSYO BYDY AT YSRAL (Jud.6:36); YSKM OWSYM XCD AT ADWNY (Gen. 24:49). However, it is used modern Hebrew only for emphasis.

$$
\begin{align*}
& S_{a b(100060(\nu n g p 00113)}=N_{p(10001002 n g p)}+U_{(1000300)} \tag{65,7}\\
& \quad+R_{(10003000 n g p)}+V_{p(1.999000 n g p 99113)}
\end{align*}
$$

Note that the subject noun is definite. See sentence lee for an example of the structure.

The deep structure derivation of this constituent is as follows:

$=S_{a b}($ class 2$)$

$=S_{a b}$ (class 3)

2.2.3.5.64 Independent $C 1$ auses (S_{a})

An independent clause is an expression of a complete thought and as such it serves as the governing element of a sentence. An independent clause may stand alone, whereas other clauses (dependent, relative, etc.) must appear in some syntactic relationship to the independent clause or one of its constituents. There are three classes of independent clauses described herein:
(1) the possessive independent clause,
(2) indefinite independent clause,
(3) the definite independent clause.

The rules are:

$$
\begin{align*}
& S_{a(100010 y 0 n g p 00 v i t)}=S_{a a(100090 y 0 n g p 00 v i t)} \tag{67.1}\\
& S_{a(100020 y 0 n g p 00 v i t)}=S_{a c(100010 y 0 n g p 00 v i t)} \tag{67.2}\\
& S_{a(100030 y 0 n g p 00 v i t)}=S_{a b(100090 y 0 n g p 00 v i t)} \tag{67.3}
\end{align*}
$$

See sentences 101a, 7, 23, A, 2, 3, and 4; for examples.

2.2.3.5.65 The Objective Relative Phrase ($\mathrm{S}_{\text {ro }}$)

The objective relative phrase modifies a relative pronoun in an objective relative pronoun clause. There are two classes of this phrase. In Class 1 the subject of the verb is not named.

The rule is:
$S_{\text {ro(1000010y0rgp) }}=V_{r b(119990 y 0 n g p 99999)}$
Example:
(S) AWTW AKL----which he ate

See sentence 10 for an example of the structure.

In class 2 the subject of the verb is named. The rule is:

$$
\begin{equation*}
S_{\text {ro }(100020 y 0 n g p)}=N_{S_{p}(12999099)} \tag{68.2}
\end{equation*}
$$

$$
+\mathrm{V}_{\mathrm{rb}(119990 y 0 \mathrm{ngp} 99999)}
$$

Example:
(S)AWIW HYLD AKL----which the boy ate

See sentences 6a and 10a for examples of the structure.
2.2.3.5.66 The Indirect Relative Phrase $\left(S_{r i j}\right)$

The indirect relative phrase modifies a relative pronoun in an indirect relative pronoun clause. There are two classes of this phrase. In Class 1 the subject of the verb is not named. The rule is:

$$
\begin{equation*}
S_{r i(100010 y 0 n g p r)}=V_{r i(119990 y 0 n g p r 9999)} \tag{69.1}
\end{equation*}
$$

Example:
(s) OLW YSB-----on which he sat

See sentence 1la for an example of the structure.
In C1ass 2 the subject of the verb is named. The rule is:
$S_{\text {ri }}(100020 y 0 n g p r)=N_{s p}(12999099 n g p)$
$+V_{\text {ri (119990yOngpr9999) }}$
Example:
(S) OLW HYLD YSB---On which the boy sat

See sentence llc for an example of the structure.

2.2.3.5.67 The Relative Pronoun C1ause (R_{g})

The relative pronoun clause is introduced by a relative pronoun. The clause may mudify a noun phrase in the attributive position or it may stand in place of a noun phrase. The relative pronoun clause has the same attributes as a noun. There are three classes of relative pronoun clauses:
(1) The subjective relative pronoun clause in which the relative pronoun is subject of the verb,
(2) the objective relative pronoun clause in which the relative pronoun is object of the verb, and
(3) the indirect relative pronoun clause in which the relative pronoun is the indirect object of the verb.

The rules are:
$R_{g(100010 y d n g p)}=R_{(100041 y 0000)}$

$$
+V_{p(11999090 n g p 00999)}
$$

Example:
SAKL AT HTPWX-----who ate the apple

$$
\begin{align*}
& R_{g(100020 y d n g p)}=R_{(100041 y 0000)}+R_{o(100010 y 2 n g p)} \tag{70.2}\\
& \quad+S_{r o(10009090999)}
\end{align*}
$$

Example:
SAWTW AKL---------which he ate

$$
\begin{align*}
& \left.R_{g(100030 y d n g p)}=R_{(100041 y 0000)}+Z_{(100010 y 0 n g p)}\right) \tag{70.3}\\
& \quad+S_{r i(10009090999)}
\end{align*}
$$

Example:
SOLW YSB--:--------on which he sat
See sentences $12 \mathrm{a}, 10$, and lla respectively for an example of each class. The deep structure derivation of this constituent is as follows:

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{sp}}+\mathrm{v}_{\mathrm{p}} \\
& \downarrow \\
& \mathrm{R}_{4}+\mathrm{v}_{\mathrm{p}}
\end{aligned}
$$

$$
=R_{g}(\text { class } 1)
$$

$=R_{g}$ (class 2)

$=R_{g}(c 1 a s s 3)$
2.2.3.5.68 The Subject-Object Dependent Clause (K_{n})

The subject-object dependent clause is an independent clause introduced by a Class 3 conjunction (KY--that) or by a relative pronoun (s). The clause may be used as the object of verbs of discourse (Class 7) in the predicate of copulative sentences. Clauses introduced by KY may ja used in place of the subject of some verbs. There are two classes. CAse: isiblical Hebrew only) is introduced by the conjunction KY. The

$K_{n(100010 y)}=C_{(1000300)}+S_{a(119990 y 099900999)}$
Example:
KY AKL AT HTPWX-----that he ate the apple
Class 2 (modern Hedrew) is introduced by the relative S. The rule is:
$K_{\mathrm{n}(100020 \mathrm{y})}=\mathrm{R}_{(1000400)}+\mathrm{S}_{\mathrm{a}(119990 y 099900999)}$
Example:
SHYLD AKL AT HTPWX---that the boy ate the apple
See sentences 26 b and 26 c for examples of the structure.

2.2.3.5.69 Circumstantial Dependent Clause (K_{c})

Circumstantial dependent clauses express attending circumstances such as time, purpose, result, cause, and reason. The clauses are introduced by key words which identify them. There are four classes of circumstancial dependent clause treated here.
(1) time depencent clause
(2) purpose-result dependent clauses
(3) cause-reason dependent clauses, and
(4) the circumstantial dependent clause.

Class 1 contains time dependent clauses that express circumstantial time re?ationships. These clauses are introduced by class 4 conjunctions (KASR--when, @RM--before, OD--until, AXR--after, etc.). These words express time relationships and are often lassified as adverbs, but their structural function is that of a conjunction. The structure of the time dependent clause is:

$$
\begin{equation*}
K_{c(100020 y)}=c_{(1000400)}+S_{a(119990 y 099900999)} \tag{72.1}
\end{equation*}
$$

Example:
KASR AKL AT HTPNX---when he ate the apple
See sentence 7 for an example of the structure.
Class 2 consists of purpose-result dependent clauses that express circumstential purpose or result relationship. These clauses are

Introduced by Class 5 conjunctions (LMON---in order that, BOBWR--in order that). 40 The rule is:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{c}(100020 \mathrm{y})}=\mathrm{C}_{(1000500)}+\mathrm{S}_{\mathrm{a}(119990 \mathrm{y} 099900999)}, \mathrm{t}=2,5 \tag{72.2}
\end{equation*}
$$

The tense of the independent clause S_{a} is limited to future tenses only ($t=2,5$).

Example:
LMON ${ }^{40}$ YWSB OL HKSA $=-$-in oxder that he sit on the chair
See sentence 7 g for an example of the structure.
Class 3 contains cause-reason dependent clauses that express circumstantial cause or reason relationship. These clauses are introduced by Class 6 conjunctions (YON--because, OQB-because). The structure of the cause-reason dependent clause is:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{c}(100030 \mathrm{y})}=\mathrm{C}_{(1000600)}+\mathrm{S}_{\mathrm{a}(119990 \mathrm{y} 099900999)} \tag{72.3}
\end{equation*}
$$

Example: YON 41 AKL TPWX-----because he ate an apple
See sentence 23 for an example of the structure.
Class 4 consists of circumstantial clauses. A prepositional phrase may serve the same function as a dependent clause. In such cases it specifies accompanying circumstances.

Example:
BBWKR HYLD AKL Ai HTPWX $-\frac{- \text { in the moxning }}{\text { the apple }}$ the boy ate
The rule is:

$$
\begin{equation*}
K_{c(100040 y)}=X_{p(119990 y 00009)} \tag{72.4}
\end{equation*}
$$

See sentences 8,9 , and 13 for examples of the structure.

2.2.3.5.70 Conditional Clauses (K_{k})

Conditional clauses serve as the protasis of conditional sentences. There is one class of the clause with variation of structure due to tense and negation.

40 Modern Hebrew uses $K D Y S$ to introduce this clause. The rule must be corrected.
${ }^{41}$ Modern Hebrew uses MPNY S to introduce this clause. The rule must be corrected.

2-121

The past conditional clauses serve as the protasis of past conditional sentences. It consists of an independent clause (S_{a}) introduced by the particle LW--if (negative LWLY).

Example:
LW HYLD HYH @WB=--if the boy had been good
The rules are:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{k}(1000100000000001)}=\mathrm{U}_{(1000400)}+\mathrm{S}_{\mathrm{a}(1199900099900911)^{(73.1)}}^{\mathrm{K}_{\mathrm{k}(1000101000000001)}=\mathrm{U}_{(1000500)}+\mathrm{S}_{\mathrm{a}(1199900099900911)}} \begin{array}{l}
\text { (73.2) }
\end{array}
\end{aligned}
$$

The independent clause must be past tense indicative mood. It may be compounded after Pattern 1.

Future conditional clauses serve as the protasis of future conditional sentences. The clause consists of an independent clause (S_{a}) introduced by the particle AM--if.

Examples:
AM HYLD YHYH @WB----------if the boy will be good
AM HYLDH LWA THYH @WBH---if the girl will not be good

The rule is:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{k}(100010 \mathrm{y} 000000002)}=\mathrm{U}_{(1000600)}+\mathrm{S}_{\mathrm{a}(119990 \mathrm{y} 099900912)} \tag{73.3}
\end{equation*}
$$

The independent clause must be future tense indicative mood. It may be compounded after Pattern 1. See sentences 7c, 7d, and 7e for examples of the structure.

2.2.3.5.71 Interrogative Clause (K_{j})

There are five classes of interrogative clauses (1) the adverbial interrogative clause which asks the circumstances of a sentence; (2) the subject-pronoun interrogative clause which questions who or what is the subject of the verb; (3) the object-pronoun interrogative clause which questions who or what is the object of the verb; (4) the indirect objectpronoun interrogative clause, which questions who or what is the indirect object of the verb; and (5) the true-false interrogative clause.

The adverbial interrogative clause consists of an independent clause introduced by an interrogative adverb (Q).

Example:
MTY KTB AT HCPR?----when did he write the book?

The rule is:
(74.1)

$$
K_{i(100010 y 0 n g p 0)}=Q_{(1000900)}+S_{a(119990 y 000999)}
$$

See sentences $1 a, 7 a, 7 b$, and $26 a$ for examples of the structure.
The subject-pronoun interrogative clause consists of an interrogative pronoun and a verb phrase (V_{p}) for which the pronoun is the subject.

Example:
MY AKi. AT HTPWX?-----who ate the apple?

The rule is:

$$
\begin{equation*}
K_{i(100020 y 0 n g p 0)}=Q_{(1000500)}+V_{p(119990 y 0 n g p 0999)} \tag{74.2}
\end{equation*}
$$

See sentence $2 a$ for an example of the structure.
The objective-pronoun interrogative clause consists of an interrogative pronoun and an objective interrogative phrase (S_{10}) of which the pronoun is the object of the verb.

Example:
MH KTB?-----what lid he write?

The rule is:
(74.3)

$$
\mathrm{K}_{\mathrm{i}(100030 \text { yOngpr })}=R_{(1000500)}+S_{\text {ro(100090y0ngpr })}
$$

See sentence 6 for an example of the structure.
The indirect object-pronoun interrogative clause consists of an inter cogative pronoun introduced by a preposition, and an objectinterrogative phrase (S_{qo}), where the preposition governs the meaning of the verb.

Example:
OI MH HYLD YSB?---upon what did the boy sit?
The rule is:

$$
\begin{align*}
& K_{i(100040 y n g p r)}=P_{(10001000000 r)}+R_{(1000500)} \tag{74.4}\\
& \quad+S_{q \circ}(10090 y 0 n g p r)
\end{align*}
$$

See sentence 11c for an example of the structure.

The true-false interrogative clause consists of an optional Class 1 interrogative adverb ($\mathrm{H}-$) and an independent clause.

Example:
(H) KTB AT HCPR?---did he write the book?

The rule is:
(74.5)
$K_{i(100040 y 0 n g p r)}=Q_{(9000100)}+S_{a(119990 y n g p 00999)}$
The deep structure derivation of this constituent is as follows:

$=K_{i}(c l a s s 1)$

$$
=K_{i} \text { (class }
$$

$=K_{i}$ (class 3)

$$
=K_{i} \text { (class 4) }
$$

2.2.3.5.72 The Discourse Clause (K_{d})

The discourse clause modifies verbs of discourse. There are two classes of the discourse clause: (1) indirect discourse clause and (2) direct discourse clause.

The indirect discourse clause consists of an independent clause introduced by the conjunction KY (classical Hebrew) or by the relative pronoun S (modern Hebrew).

Example:

> AMR SKTB AT HCPR--the said that he wrote the book

The indirect discourse clause is indentical in structure to the subject-object dependent clause (K_{n}).

The rule is:

$$
\begin{equation*}
\mathrm{K}_{\mathrm{d}(100010 \mathrm{y})}=\mathrm{K}_{\mathrm{n}(100090 \mathrm{y})} \tag{75.1}
\end{equation*}
$$

See sentences $26 b$ and $26 c$ for examples of the structuxe.
The direct discourse clause consists of a string of completed sentences bounded by quotation marks.

Example:

> (AMR), "ANY KTBTY AT HCPR." $--($ he said); "I wrote the book."

The rule is:

$$
\begin{aligned}
& K_{d(100020 y)}=T_{(10004)}+T_{(10001)}+S_{c(119990 y)} \\
& \quad+T_{(10002)}
\end{aligned}
$$

See sentence 26 for an example of the structure. Discontinuous direct discourse is not included in the grammar at this time.
2.2.3.5.73 The Dependent Clause Sentence (S_{d})

The dependent clause consists of an independent clause preceded or followed by a dependent clause. The rules are:

$$
\begin{align*}
& S_{d(100010 y 0000000 i t)}=K_{c(1199909)}+T_{(90003)} \tag{76.1}\\
& \quad+S_{a(119990 y 0999009 i t)} \\
& S_{d(100020 y 0000000 i t)}=S_{a(119990 y 0999009 i t)} \tag{76.2}\\
& \quad+T_{(90003)}+K_{c(1199909)}
\end{align*}
$$

Class 2 is used when emphasis is placed on the dependency.
See sentences $7,8,9$, and 13 for examples of the structure of Class 1, and sentence 23 for Class 2.

2.2.3.5.74 The Basic Sentence (S)

The basic sentence is the main constituent of the completed declarative sentence and the completed imperative sentence. It is found in the context

$$
\begin{aligned}
& \mathrm{S} . \\
& \mathrm{S}!
\end{aligned}
$$

There are three classes of the basic sentence: (1) the simple sentence, (2) the dependent clause sentence, anc (3) the conditional sentence.

In Class 1 , the simple sentence consists of an independent clause only. This clause may be compounded after: Pattern 1. There are no restrictions on the clause attributes. The rule is:

$$
\begin{equation*}
S_{(100010 y 0000000 i t)}=S_{a(119990 y 0999009 i t)} \tag{77.1}
\end{equation*}
$$

See sentences A, 1, 2, etc., for examples.
Class 2 consists of a dependent clause sentence. The rule is:

$$
\begin{equation*}
S_{(100020 y 0000000 i t)}=S_{d(100090 y 000000 i t)} \tag{77.2}
\end{equation*}
$$

See sentences 7, 8, 9, and 23 for examples.

For Class 3 , the past conditional sentence consists of a past conditional clause for a protasis and a past continuous tense independent clause for an apodosis. The future conditional sentence consists of a future conditional clause for a protasis, and a future tense independent clause for an apodosis. The rules are:

$$
\begin{align*}
& S_{(100030 y 0000000 i 1)}:=K_{k(1199109000000001)} \\
& \quad+T_{(90003)}+S_{a(119990 y 099909 i 4)} \\
& S_{(100030 y 0000000 i 2)}=K_{k(1199109000000002)} \tag{77.4}\\
& \quad+T_{(90003)}+S_{a(119990 y 099909 i 2)}
\end{align*}
$$

For conditional sentences in which the protasis is negated, K_{k} is negative (subscript $y=1$); for those in which the apodosis is negated, S_{a} is negated (subscript $y=1$).

See sentences 7c, 7d, and 7e for examples.
2.2.3.5.75 The Interrogative Sentence $\left(S_{i}\right)$

The interrogative sencence consists of an interrogative clause with optional dependent clauses. There are three classes. Class 1 consists of an interrogative slause with no dependent clauses. The rule is:

$$
\begin{equation*}
S_{i(100010 y)}=K_{i(100090 y 09999)} \tag{78.1}
\end{equation*}
$$

See sentences 1a, 2a, 6a for examples.
Class 2 consists of an interrogative clause with a preceding dependent clause. In this case emphasis, if any, is on the question: The rale is:

$$
\begin{equation*}
S_{i(100020 y)}=K_{c(1199909)}+T_{(10004)}+K_{i(100090 y 09999)} \tag{78.2}
\end{equation*}
$$

See sentence 7a for an example.
Class 3 consists of an interrogative clause followed by a dependent clause. In this case, emphasis is placed on the dependent clause. The rule is:
(78.3)

See sentence $7 b$ for an example.

2.2.3.5.76 The Completed Sentence (S_{c})

The completed sentence is the initial constituent of the grammar. It consists of one of the three types of sentences of the language and the appropriate sentence ending punctuation mark. There are three classes of completed sentences: (1) the completed declarative sentence, (2) the completed interrogative sentence, and (3) the completed imperative sentence.

The completed declarative sentence consists of a basic sentence (S) followed by a period. The rule is:

$$
\begin{equation*}
S_{c(100010 y)}=C_{(90008)}+S_{(100090 y 000000099)}+T_{(10006)} \tag{79.1}
\end{equation*}
$$

Compounding is not permitted. The completed declarative sentence may be in the indicative, subjunctive, or imperative mood. Nonemphatic imperative sentences are terminated with a period.

See sentences $A, 1,2,3$ s etc., for examples.
The completed interrogative sentence consists of an interrogative sentence (S_{i}) followed by a question mark. The rule is:

$$
\begin{equation*}
S_{c(100020 y)}=C_{(90008)}=S_{i(119990 y)}+T_{(10005)} \tag{79.2}
\end{equation*}
$$

See sentences $1 \mathrm{a}, 7 \mathrm{a}$, and 7 b for examples.
The completed imperative sentence consists of a basic sentence in the imperative mood followed by an exclamation mark. The rule is:

$$
\begin{equation*}
S_{c(100030 y)}=C_{(90008)} \quad S_{(100090 y 000000022)}+T_{(10007)} \tag{79.3}
\end{equation*}
$$

See sentence 1 lb for exampie.
This completes the description of the replacement rules; it also completes the formal description of the syntax grammar.

2.3 Examples and Illustrations.

This section contains tree diagrams of Hebrew sentences that were produced by means of a computer using ${ }^{\text {b }}$ the computerized algorithms developed on this research project. They serve as examples and illustrations of the grammar rules of ..dern Hebrew syntax.

2.3.1 Tree Diagrams of Computer Generated Sentences

This section contains tree diagrams of Hebrew sentences generated by means of computer using the computerized algorithm for generating Hebrew sentences described in Part III of this report. They are referenced throughout the preceding text to illustrate the application of rules of the grammar. Reference numbers are in the upper right of the diagrams.

The sentences were generated to demonstrate to the use of the grammar and to test the grammar rules. A total of 47 sentences were generated of which 42 are correct and 5 contain errors requiring modification of the grammar rules. Some of the sentences illustrate classical options available in the grammar. The errors are usually noted on the diagram. In generating these sentences 111 of the 179 rules on nonterminal symbols were tested, and 41 of the 65 rules on terminal symbols were tested. These 65 rules define the class variations of 20 terminal symbols, 17 of which have been tested for at least one class.

TREE OIAGRAM OF HEBREY SENTENCT:

 XYYM NYMN GYALYO HYH MSWRR EDNL PARE YŞAL

137

2-132

0 O

[^10]140

```
            EOUTGALENT ENGLISH SER!TENCFE
TREE \IGAGRGN TF पEQREN SENTENEE
```


GF SULTANT HFBREW SENTFNCE=

XYYM NYHN FYALYE MSHRR GDUI. BARB YSPAL.
象娄
141

TREE DIAGRAM OF HEBREN SENTENCE

RESULTANT HEGREL SENTENGE-

AYN XYYM NXMN EPALYO MSHRR GOUL BARI YSRAL.

ER
2-138

145

84

HHA YSE BKPR OPN:

HBA YYロE EKPD GEN.
net

```
            EMUIVAL-ST ENGLISL EENTENCE-
```



```
                N
                    GFSULTA*NT HFPRFU SENTGNCE=
    HLa YmKB HKPN O@M.
```


HWA HYH VUSB OL KCA GAN.

152

ERIC *


```
EQUIVALENT ENGLIE: FHTEMCE-
BUT HE ALSO LOVED HE FIELDS AND THE FORESTSO
TREE DİAGिAM ÓF HEBAEH SENTENCE
```


RESULTANT HEGREM SENTENCE-

154
E宽
ABL HUA AHB GM AT HSDUT UAT HYORYME

$$
\begin{aligned}
& \text { EGUIVALENT ENGLISH SENTENEE- } \\
& \text { RIIT WHAT DID HE LOVFT } \\
& \text { TREE DIATRAM OF HEAREH SENTENEE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RESULTANT HEGREW SENTENCE = } \\
& \text { APL MH HWA AHB? . }
\end{aligned}
$$

TREE DIAGEAH OF HEBREG SENTENCE

RESULTANT HEBREN SENTENCE -

KASR BYALYO GOL HIK LLYUD SYSTOH GOMLH.

TREE DIAfRAF OF HERRFG SFNTENCE

(C1assical)

```
EGUIVILFNT FNGLISH EENTENCE-
```

HHFN GIYALTK GREW UP. DID HE GO TS STJOY IN A LTGE AGADAHY?
TREE RTABRaM OF HEGRFH SFNTENCE

RESULTANT HEPREW SENTFNCE-

KASR SNGLYG GOL. HAM HLK LLMUD SYSYBH SOWLH?
(Modern)

TREE OIASRAY OF HEPAFU SFNTENEE


```
        CBUIVALFVT FAG&ISH SENTFNRE=
```



```
            TQFE FTAFGRM ?F HESRFH SFNTENGE
```


EFSULTANT HFPREU SENTENCE

```
        EGUIVA:FNT FMGLISH GEMTENCE=
        TF BITALIN HAD NOT GROWN UP. HE WOULD NOT HAYE GONE TO STUOY IN A BIG ACADAMYE TD
            TGEE OIAGQAM OF पERREM SENTENCE
```


事要要要

```
        EQUIVALENT ENGLISH SENTENCE=
        IF GIYALIK HILL NOT GROU UP, HE UILL NOT GO TO STUUOY IN A LARGE GCADAMY- TE
            TPEE DIAGRAM OF YERRFW SFNTENCE
```


TREE DIGGRAM OF HEQREU SEMTEMCE


```
        EQUIVALENT ENGLISH SENTENGE-
        IN ORDER THAT BYYALIK GROH UP, HE WEMT TO STUOY IM A LARGEE ACADAMYE TE 
        TREE DIAGRAM OF HEBRFM SENTENCE
```


LPON BYALYO TGDL HE LEMED BYSYAH GONLHE
should be:
KDY SBYALYQ YGDL, HLK LIMTD EYSYBH GDHLH.

EGUIVALENT ENGATSH SENTENCE= IM THESE POEMS HE UROTE ABOUT THE SUN AND THE MOON.

TREE DIAGQAM OF HEAREM SENTENCE

RESULTANT HEBREG SENTENEE-

ESYRYM HALH HUA KTB OL HSMS HOL HYRX:
166


```
EQUIYALEMT ENBLISH SENTENCE-
HE HROTE MANY POEMS ABOUF THE LAND OF GSRAEL AMD TME PEOPLE GF ISRAELE IL
TREE OIAGRAM OF HEBREV SENTENCE
```


HAA KTB HRBH SYRYM OL ARE YSFAL WOL OM YSAAL of
58

EOUIVALFNT EHGLISH SENTENEE=
HE IOVED THE LAND OF ISRAEL ABOUT HHIEH HE YROTE HAMY POEAS.

TREE OİG保AM OF HERREY SENTENEXE

HWA AHR AT ARI YSRAL ASR KTB OLYH HROH SYBYM
This is classical. Modern Hebrew prefers בns nimyu.
172
15

Error: There should tee no misy.

```
EQUIVILFHT ENGEISH SERTENCE=
THE STUDENTE LFARNED THE FOFHS AND XNEG THEH BY HEART
TREE DIAGRAM OF HEARFH SENTENCE
```


174

HTLMYOYM ASR LMDM AT HEYRYM HALH YDOU AUTH OL PH.

This is Classical. Modern Hebrew prefers 7 mbw.
175

TREE DIASARM OF HEGREG SENTENCE

- 176

4
2-168

```
ERUIVALTNT ENGGLSG FENTFGPF=
```


© Cl

177
ERIC 7 is Classical. Modern Hebrew uses -w mum. 2-169

 HA以

[^11]
EOUIVALTNT FAGLISH GENTFNCE-
JOSEPH NOFS NOT HAYT A POOM.
TPEF OIACRAM OF HESRFW SFNTENCE

$\begin{gathered} \text { se. } \\ \mathrm{I} \end{gathered}$				
	J			I
	S-1			T-6
	I			T
	I			I
	I			I
	S4).			!
	I			+
	I			Y
	T			Y
				T
	I			!
I	I		I	\dagger
L-1	XP1		NSP1	I
I	I		I	1
I			I	T
I	1	I	I	\dagger
I	P-1	NP 1	NPI	T
I	I	I	T	T
I	I	I.	I	T
I	I	I	I	T
I	I	NPA1	NPA1.	I
I	I	I	I	T
I	1	I	1	I
I	1	I	I	T
I	1	NPA1	NP91	\dagger
T	I	I	T	I
I	1	I	T	T
I	I	I	I	I
I	I	N43	NA1	I
T	1	I	I	I
T	1	I	T	,
I	I	I	I	T
I	I	$\mathrm{N}-2$	N-1	T
T	I	I	I	I
I	I	I	I	I
T	1	I	I	I
L-1	P-1	$N-?$	N-1	T-5

[^12] *
ERIC AYA LYWCP XDR.
\[

$$
\begin{aligned}
& \text { ESUIVALFNT FNGIISH TEムTENCE- } \\
& \text { JOSFPH HAS } 1 \text { 'ROOM. } \\
& \text { TRFE TTARマA* OF HETRFW SFNTENCE. }
\end{aligned}
$$
\]

$$
\begin{aligned}
& \text { RESULTANT HEOREW SENTFNEEー } \\
& 186
\end{aligned}
$$

RFSULTANT HERREW SENTENCE-
Lrwcp lwa rhym xdr.
OBE

2.3.2 Tree Diagrams Of Computer Analyzed Sentences

This section contains tree diagrams of Hebrew eentences analyzed by means of a computer making use of the computerized algorithm for analyzing Hebrew sentences described in Part IV of this report. The sentences were generated to demonstrate the use of the grammar in its analysis mode. A total of 26 sentences were analyzed. The sentences usually correspond to those generated by the algorithm for generating Hebrew sentences. However, in some cases they are alternate versions.

HEBREW SET.TENCE Ai.ALYZEU=-
XYYM NXMN ,IYALYU WYH WSWKH GUNL BAFR YSRAL.
tree uiagram of i.Ehrew sentence No. 1.

189
$2-178$

HEBREW SENTENCE AHALYZED--
HAM XYYM fUXMN E . TG HYH MSWR GDWL BARA YSRAL?

TREE DIAGRAM OH HEGREW SENTENCE 101.

tet
190

TREE DIAGRAM OF HEGREW SLNTENCE 102

04 t.
2-180

HEBREW SENTENCE ANALYZED=F

 XYYM NXMN BYALYG YHYH MSWRR GDWL BARA YSHALTREE DIAGNAN OF HEHREW SENTENCE 103.

193
ser

2-182

HEBREW SENTENCF ANALYZED--
MY HYH GOWL MKL HMSWRRYM?
tFEe ntafqam of tebrew sentence no. 201

2-	$v-1$	A-1	P-1	$J=1$	H-1	N-1	T-5
I	I	I	I	I	I	I	I
T	1	1	I	I		-	1
I	I	1	I	I	τ		I
I	...V6 1	I	I	1	WAZ		I
T	I	1	1	I	I		5
I	1	1	I	I	\underline{I}		1
I	1	I	I	I	1		1
I	VBis 1	I	1	J-1	NPR1		1
I	1	1	I	I	I		1
I	I	1	I				I
I	1	1	I	1			1
1	vci	I	I	NPA 2			I
1	1	1	I	I			I
I	I	1	1	I	,		I
I	1	I	1^{-}	I			I
I	V.AAI	I	P-1	NP1			I
1	1	1	I	I			I
I	$\underline{1}$	1					I
I	1	- I	1		.		I
I	1	A-1	XP1				I
I	I	I	I				I
I	$\underline{1}$		---				I
I	I	I					\underline{I}
I	I	APA 2					I
I	I	I					1
I	I	- I					1
I	I	1				,	I
1	I	ADI					1
I	I	$\underline{1}$					I
I	1	1					1
I	1	I			.		I
I	1	NPX1					1
I	I	I		.			I
I	I	I			.		1
I	I	1	.		.		1
I	VAII	VM 1		.			\underline{I}
1	I	1				-	I
I							$\underline{1}$
I	1			.			1
P-5	VP 1						I
1	I						$\frac{1}{1}$
I							I
42							I
4P						-	\underline{I}
T						\because	I
- I		-					1
SII							T_{1}^{-5}

I
194

```
HEBREH SENTENCE AYALYZED--
```

HWA YSR BKPR OTV.

TREE DIAERAM OF HEBREH SENTENCE NO, 4

兑
I
SCI

HEBREW SENTFNCE AHALYZED-H:NA YYSP RKPR BIN.

$$
\text { TREE DTAGRAG OF HERRFA SENTENCE NO. } 401
$$

HHA YHSB 3KP? GaN.

TREE DIGGRAM OF HEGREH SENTENCE NO. 402

ERIC'
2-186

HEBREH SENTENCE ANALYZED--

TREE DIAGRAM OF HEGREM SENTEACE NO. 404

HEBIREW SENTERTCE A;ALYYZED=HWA AHES LLMWD TWRH.

TREE UIAGRAM OF HEBREW SE!,TENCE NO. 5.

200
2-189

HEBKEW SÉTATENCE AIIALYZED--
HLK LLMWU LGYSYEH GOWLH.

TREE DIAGRAM OF HEEREW SENTEIJCE NO. 7.


```
HEUKEA^ SELTENGE A.IALYZED-=
```

HFILK LLAWC GYSYISH GUWLH?

TREE LIAGKAM OF MEGKEW SEFTEIJGE: NO. 7OI.

$2-193$

HEBKEW SEI.TEIJCE AiJALYZED--
HAM GYALYG HLK LIAMUS GYSYBH GOFLH.

TREE DIAG,AM UF HEGKEW SEITLIVCE NO. 703.

205

HEGREW SEIッTENCE ANALYZED- $=$
HWA KTB AT HSYRYM HRASWNYN.

TREE DIAGIRAM OF HEEREW SEITTENCE NO. 8.

$2-195$
206

HEBREW SENTENCE A.VALYZEO-HWA KTH OL HSMS.

TREE UIAGFAM OF HEBREW SEITENCE No. 9.

0 O

2-197
208

209

HEBREW SENTENGE ANALYZED-BYALYO NCO LARE YSRAL.

TREE OIAGRAM OF HEBREW SENTENCE No, 13.

象事

HEBREA SEIITENCE AINALYZED-KL HYHDYM IKW OL NIWTW.
tree diagram of hebrew sel!ience No. 23.

211

HEGKEW SENTENCE ANALYZED-
HAM ATH RKII LRAH AT BYT HKNCT?

TREE DIAGKAM OF HEBREW SENTENCE No. 26.

HFBREW SENTENGE AIAALYZED=AYN LYWCP XDR.

TREE DIAGRAM OF HEBREW SEHTENCE No. 111.

L. 1	$\mathrm{F}-1$	$\mathrm{N}-2$	$\mathrm{N}=1$	T-6
I	I	1	I	1
I	1	I	I	1
1	I	1	I	1
I	I	NA3	INA1	1
1	I	1	1	I
1	1	1	I	1
I	1	I	I	1
I	1	NPB1	NPB1	I
I	1	I	1	I
I	1	1	1	1
1	1	I	I	1
I	1	NPA1	NPA1	1
1	I	\underline{I}	1	1
1	1	J.	1	I
1	1	1	1	1
1	$P=1$	$\mathrm{Nr}{ }^{1} 1$	NP1	1
1	1	I	I	1
1		- -	I	1
1	1		1	I
L-1	XPI		NSP1	I
I	1		I	1
				I
	1			I
	SAA 4			1
	I			I
	1			1
	I			I
	SA1			1
	1			
	I			I
	I			I
	S-1			$T=6$
	I			1
$\begin{gathered} \mathrm{I} \\ \mathrm{Sc} \\ \hline \end{gathered}$				

219
St

HEBREW SEIVTEHCE AivALYZED=YS LYWCP XIDR.

TREE DIAGRAM OF HEGREW SEHTENCE No. 112.

2.4
 CLASSIFICATION OF HEBREW WORD

This section describes the work performed to classify the 1040 most common Hebrew words as Listed by Rosen. ${ }^{41}$ The words were classified according to the following categories which are required by the grammars of Hebrew orthography and syntax:

(1)	Root
(2)	Syntactic Function
(3)	Function Class
(4)	Syntactic Gender
(5)	Preposition Class
(6)	Voice
(7)	Verb Class
(8)	Stem
(9)	Stem Class
(10)	Number-Gender Transform
(11)	Feminine Singular Class
(12)	Historic Period
(13)	English Meaning

The following material explains these categories in detail. Appendix A contains a lis ing of the classification of the words. The classification was prepared by Dropsie University. It serves as a dictionary for the Hebrew grammar.

2.4.1 Root

Most Hebrew words are constructed from triliteral roots consisting of consonantal characters that usually remain throughent the various stems and their inflections. A few Hebrew words appear to have bil teral roots and a few have quadriliteral roots. Certain one-syllable words which only occur prefixed or suffixed to other words may be considered to have uniliteral roots. Hebrew dictionaries list the words in alphabetic order according to their classical roots. In most cases the present root classification is in agreement with the commonly accepted roots. In a few cases where the infiections of a word are quite irregular, artificial roots have been supplied so that the algoxithm for generating Hebrew words will be able to compute the co-rect spelling of all the inflectional forms. Four root letters are provided; an asterisk ($\dot{*}$) is used where a root letter is lacking, so that triliteral roots are recorded as MLK*. Words that do not follow the Hebues system of inflection are not included in the data.

2.4.2 Syntactic Function (A)

This category corresponds to the classification of terminal symbols previously described in Section 2.2.2.4 and listed in Table 2-3; it defines the word's function as a symbol in the grammar of syntax.
${ }^{41 \text { Haiim B. Rosen, A Textbook of Israel Hebrew, The University of }}$ Chicago Press, 1969.

Only the following classifications are used:

A - Adjective
B - Number
C - Conjunctive
D - Adverb
L = Negative
N - Noun
O - Objective Particle
P - Preposition
Q - Interrogative
R - Pronoun
U - Particle
V - Verb

This does not include the definite article (H), punctuation (T), contructs (G, F, J, and Y), and verbal nouns (F and W, which are classified as verbs).

2.4.3 Function C1ass (C)

This is a subcategory under syntactic function; it corresponds to the classes of the various terminal symbols as outlined in SecEion 2.2.2.4. For example, the classes of nours are:

$$
\begin{aligned}
& \text { Class } 1 \text { - improper nouns } \\
& \text { Class } 2 \text { - proper place names } \\
& \text { Class } 3 \text { - proper personal names }
\end{aligned}
$$

2.4.4 Syntactic Gender (G)

This category applies to nouns only; for all other words its value is 0 . It defines the gender of adjectives, verbals, and pronouns that may modify the given word in a sentence (i.e., its syntactic gender). For some words the inflectional gender does not correspond with the syntactic gender. This is corrected by the number-gender transform defined later.

2.4.5 Prepositional Class ($F_{\text {) }}$)

Some verbs in Hebrew govern an object with a preposition (see Section 2.2.2.4.18). This category corresponds to subscript r of the grammar symbols; it specifies the preposition typs required to complete the meaning of such verbs, and it specifies the class of prepositions. See Section 2.2.2.4.13 for the classification of prepositions. For other words this category is listed as 0 .

2.4.6 Voice (V)

This category specifies the voice of verbals. It corresponds to subscript v of the grammar symbols. The voice of a vert is often specified by the derived stem. However, since tinere are numerous exceptions, this category is required. For nonverbals this category is listed as 0 .

2.4.7 Inflection Class (U)

This category specifies the inflection pattern to be used by the algorithm for generating Hebrew words. The words are categorized as follows:

$$
\begin{aligned}
& \text { Class } 1 \text { - Verbs } \\
& \text { Class } 2 \text { - Participles } \\
& \text { Class } 3 \text { - Infinitives } \\
& \text { Class } 4 \text { - Nouns, Numbers, Adjectives } \\
& \text { Class } 5 \text { - Pronouns } \\
& \text { Class } 6 \text { - Prepositions, Object Particle } \\
& \text { Class } 7 \text { - Others }
\end{aligned}
$$

2.4.8 Stem (S)

This category specifies the derived stem form of the given word. The forms are different for verbs and nonverbs. Table $2-4$ lists stem forms for verbs; Table 2-5 lists the stem forms for nonverbs. Uninflected words follow the stem forms of Table 2-5 in accordance with the masculine singular absolute inflection. The tables specify the general form of the stem in that the numerals stand in place of the corresponding root letter. Thus the numeral 2 stands in place of the second root letter, and the form H12Y3, when applied to the root BDL*, produces the stem HBDYL.

Table 2-4

STEM FORMS FOR VERBALS

Stem Code	Stem Form	Stem Name	Mode	Voice
02*	12W3	Qal	Simple	Passive
03	N123	Niphal	Simple	Passive
04	1Y23	Piel	Intensive	Active
05	1W23	Pual	Intensive	Passive
06	HT123	Hithpael	Simple	Reflexive
07	H12Y 3	Hiphil	Causative	Active
08	HW123	Hophal	Causative	Passive
09	1W22	Polel	Intensive	Passive
10	HT1W22	Hitkpolel	Simple	Refiexive
11	123	Qal (qațol/yiqtal)	Simple	Stative
12	123	Qal (qatal/yiqtel)	Simp	Active
13	123	Qa1 (qattel/yiqtal)	Simple	Stative
14	123	Qa1 (qaṭal/yic̣tocl)	Simple	Active

*--For Participles only

Table 2-5

STEM FORMS FOR NONVERBALS

Stem Code	Stem Form	Example	
01	1234	MLK	king
02	12Y 3	SOYR	goat
03	12W3	OMWQ	deep
04	1W2 3	ONLM	eternity
05	1 Y 23	AYLM	dumb.
06	1Y2W3	QY@WR	smoke
07	A1234	A\&BO	finger
08	A12W3	AGRWP	fist
09	H1234	HNPH	a swinging
10	H12Y3	HBDYL	difference
11	H12W3	HRDWP	- leander
12	M1234	MAKL	food
13	M12Y 3	MZBYX	altar
14	M12W3	MXCWR	want
15	T1234	TPAR (T)	glory
16	T12Y3	TLMYD	pupil
17	T12W3	TGMWL	benefit
18	N1234	NPTL	tortuous
19	1234 Y	RGLY	footman
20	N12W3	NPTWL (YM)	wrestling
21	S1234	SLHB (T)	Elame
22	1234 N	SLXN	table
23	1234 WN	ABDWN	destruction

2-2029

Table 2-5 (continued)

STEM FORMS FOR NONVERBALS

Stem Code	Stem Form	Example	
24	1(23)4	AYS	man
25	(123) 4	AYSH	woman
26	12(34)	AXWT	sister
27	1(23) 4	AB	father
28	1(234)	PḤ	mouth
29	1(234)	BYYT	house
30	1(234)	BT	daughter
31	1234(Y)	SARYT	remainder
32	1234 (W)	MLKWT	kingdom
33	123(4)	QNAY	infant
34	12(34)	AMH	mother
35	1(23) 4	YWM	day
36	1(23)4	KLY	vesse1
37	HT1234W	HTLKDWT	cohesion
38	1(23) 4	KMW	1ike
39	12(34)	AXD	one
40	A12Y 3	AB@YX	watermelon
41	123 W 4	BQBWO	bottle
42	123 Y 4	KR@YC	ticket

In table $2-5$, Stem Forms 24 through 42 (with a few exceptions) represent stems that are inflected in an irregular fashion. Table 2-6 lists the stem form for every inflection of these irregular forms.

2.4.9 Stem Class (F)

This is a subcategory under Stem. This classification is required to account for variant stem forms within a given stem category: All words in this present work are classified as category 1. Additional work is required to catalogue stem variants, particularly for the Niphal, Hiphil, and Qal Stems of the verbs.

2.4.10 Number-Gender Transform (X)

For some Hebrew nonverbal words the inflectional number and gender do not correspond with the syntactic number and gender. This category provides the code for transforming syntactic number and gender to the corresponding inflectional number and gender. This eliminates the need for new stems to account for all observable perturbations. Table 2-7 lists the transformations associated with each code. The table is interpreted as follows: Code 0 means that no transformation is required; Code 2 means that syntactic feminine singular is changed to inflectional masculine singular, otherwise no change (example: A\&BO, A\&BOWT--finger); Code 6 means that syntactic feminine is always changed to masculine (example: OYR, ORYM--city); Code 11 means that syntactic number is always changed to dual (example: OYYN--eye).

2.4.11 Feminine Singular Class (H)

The feminine singular absolute inflection of some Hebrew nouns, adjectives, and participles has the suffix H. The others have T. This category specifies which is the be used for a given word. For Code 0 the suffix is H; for Code 1 it is T. For verbs the code specifies the suffix used with the participle. This category eliminates the necessity of providing alternate stems for each case.

2.4.12 Historic Period

Four code numbers spify the use of a given word in four historic periods: Classical, Mishnaic, Medieval, and Modern, respectively. Code 0 means that the word is not found in the literature of the associated period; Code 1 means that it is found. For example, the Code 0101 means that the word is found in Mishnaic and Modern Hebrew literature only.

Table 2-6

STEM FORMS OF IRREGUI.AR NONVERBALS .

Sem	Gen.	Absolute			Construct		
		Sing	Dual	Plur	Sing	Dua 1	Plur
24	M	124	134	134	124	134	134
	${ }_{F}$	124	124	134	124	124	134
25	M	34	34	34	34	34	34
	F	124	124	124	14	14	14
26	M	123	124	124	123	124	124
	F	123	123	124	123	123	124 124
27	M	124 124	124	124 124	1234	124	124 124
28	M	124	124	12	12	12	12
	F	12	12	123	12	12	123
29	M	1234	14	14	124	14	14
	F	1234	1234	14	124	124	14
30	M	12	12	12	12	12	12
31	F F	1234	$\stackrel{1}{1234}$	12	${ }_{1234}^{1}$	$\stackrel{1}{1234}$	${ }_{1234}^{12}$
	,	1234 Y	1234 Y	1234 Y	1234 Y	1234 Y	1234 Y
32	M	1234	1234	1234	1234	1234	1234
	F	1234W	1234W	1234W	1234 W	1234W	1234W
33	M	1234	123	123	1234		
	$\stackrel{\mathrm{F}}{\mathrm{F}}$	1234	1234 1234	1234	1234	1234 1234	1234 1234
34	$\underset{\mathrm{M}}{\mathrm{M}}$	12	1234	1234	12	12	1234
35	M	1234	1234	134	1234	134	134
	F	1234	1234	134	1234	1234	134
36	M	1234	124	124	1234	124	124
	F	1234	1234	124	1234	1234	. 124
37	M	HT1234W	HT1234W	HT1234W	HT1234W	HT1234W HT1234W	HT1234W
	F	HT1234W	HT1234W	HT1234W	${ }_{\text {HT1234W }}$	HT1234W	HT1234W
38	M	14	1234	1234	. 123	123	123
	F	14 1234	1234	1234	${ }^{1} 1234$	1234	1234
39	$\stackrel{\text { M }}{\text { F }}$	124	124	1234	124	124	1234
40	M	A12Y3	A12Y3	A12Y3	A12Y3 A12Y	A12Y3	A12Y3
	$\stackrel{\text { F }}{ }$	A12Y3	A12Y3	A12Y3	A12Y3	A12Y3	A12Y3

$\cos m \rightarrow$

Table 2-7

NUMBER-GENDER TRANSFORMS

$$
r-223
$$

2.4.13 English Meaning

The last classificatici provides the equivalent English meaning. Words with alternate meanings require duplicate entries.

2.5. Conclusions

The generalized complex-constituent phrases-structure grammar, as specifically applied to modern Hebrew herein, was found to be suitable for accurately defining the syntax and orthography of a Semitic language, and to be suitable for mechanization on a computer. This was demonstrated by the high degree of success achieved in producing a computerized algorithm for generating Hebrew sentences (described in Part III), in producing a computerized algorithm for analyzing Hebrew sentences (described in Part IV), and in testing the rules of the Hebrew grammar by means of the computer. Of the 47 sentences generated, 42 were grammatirally correct, two were correct except for a superfluous period, and three contained errors that required further modification of the rules. In the process of generating these sentences, a large percent: ge of the rules wexe tested, and in numerous cases the rules were modified to correct deficiencies and errors in their original version.

The results of the test indicate that the grammar of Hebrew is essentially correct, but that some of the rules are in need of further development. In all cases, where errors occurred, they were due to the content of the rules and not to the form of the grammar. There are three areas where further development is needed in the syntax grammar. First, the remaining rules, which have not been cested, should be verified by means of the computer. Second, in the case of some symbols, the specific linguistic feature and its associated semantic values are not clearly defined (for example, quantification). It is evident that in some of these cases, existing rules must be reorganized to simplify and facilitate such a clear definition. Finally, in some cases, certain linguistic features and classifications have not yet been included in the grammar (for example, qualifiers). These features should be included as they are defined.

The results of this research provide good reason to believe that the generalized grammar can be successfully applied to other Semitic languages such as Arabic.

Appendix

PART II

APPENDIX A

HEBREW-ENGLISH DICTIONARY

PART I I

APPENDIX A

HEBREW-ENGLISH DICTIONARY

This appendix contains a dictionary of the 1040 most commonly used words in modern Hebrew. The words are classified for use in the complex-constituent phrase-structure grammar of modern Hebrew defined in the main body of this part of the report. The classification system is described in Section 2.4.

The words are listed first in alphabetic order by root to provide a Hebrew to English Dictionary. Because of the transliteration (see Table 2-1) used for the Hebrew characters, the order is not that usually found for Hebrew.

The words also are listed in a1phabetic order of the English equivalent to provide an English to Hebrew dictionary. The words are listed only once in the order of the first. English meaning.

 MISFORTUNE, ACCIDENT
FOFEIDDEN, PROHIBITED
 RED
HUMAN BEING, MAN

已氏 MOONOONMMEOONONOOOOOOOOOOOOOO

 - 4.4.

$$
2-A-2
$$ THOUSAND

GOD
GOD
GCDDESS
IF
IF，WHETHER
MOM
BATHTUE，BATHROOM BATHTUE：BATHROOM MOTHER
MIDDLE TRUST 3＾3173日 TRUST ג甘S
H뇬

73sSIn＊dHS

350N

－AVM

coonooooo 0000H000000000000000月
000000000000000000000000 OONOOO

 $0000000000 \mathrm{HFH00000000000000000}$ $0000000000 \mathrm{HNO} 00000000 \mathrm{mo0000000}$

$\geq c$

LATE
SUME
SOME
OINE
ONE
OTHER
LAST
AFTER

山 O L

CLEAR

IRON
 DAUGHTER，GIRL
ITSIDE OF，WITHIN
COME，ARRIVE． BRING，LEAD IN
gRain Produce号 IRON
COOK

1037 •1Jヨ7ヨS •7SOOHJ 7yI9 •人O甘7 9NnOd
人ח9－ 10 G －NVW 9NOOR
3NIWVX3 1531
dWVIS
JOnoodd NIVY9
NI GVJา 9NIHE
NIHIIM 30 JOIS：NI
7yIS＊yJ1H9n＊o
$1 \forall 3 W$
\％003
NORI
dVL 1 $1 \exists 3 \cap+1$
W0yd 337
HSNHE
8ソ373

EXPLAIN GRANUMA（FAMILIAR STYLE）
BETWEEN，AMONG
UNDERSTAND
HOUSE
PEASOI，CAUSE
PROPER NAME MRRANGEMENT，PASSOVER EVE

 0000000000000000 JOOOOONCOOOO

 $\langle\geq>\geq \geq>z \geq$ a $\gg \geq z>\geq \geq \geq \geq \rightarrow \geq z \geq \geq 0>\geq>z z$

$\therefore 231$

ARRANGE
STAFF
LIBRARY
SHUT, CLOSE
CONSENT, AGREE
MISERABLE, PITIABLE, POOR
DANGER
KNIFE
KNIFE
SUGAR

0
$\mathbf{4}$
0
0
\sum_{2}
0
0
0
$\mathbf{1}$
1

LADOER SHOP 13XSVB LADDER

 ONOOOOOOLNOMOOOOOONOOOOMOOOOO

 H0 OHFOOOOODOODOHOOOOOOOOOOOOOO

ENGLISH EQUIV.

000700000000000000000000000000 00000 mNOOmOROOROOOODOOMOOROOOO

 H0000000000000000000000000月000 0000000000 OROOOOOORNOMOOOOON

 $00000 N 0000000 \mathrm{HOO} 0000000000000$ 00000000000000000000000000000

 $z z<z \geq>\ll z z z z z>z z 0 \times 0 z z \geq \& z z=z z \& z$

 $\therefore 23368$ 2-A-9

 Q

 000000 HOOOHOO 00000000000000000 0000000000000000000000 NOODmOOO

 000月00000007000007000000000700 000000000000000000000000000000

English Equiv. QUALIFIED，FIT，KOSHER CLASS，SECT ADDRESS，INSCRIPTION LETTER，NOTE WRITE
（A）GLASS
GROCERY STORE
ALL，EVERY，WHOLE，ANY ALL，EVERY，WHOLE，ANY RIGHT，CORRECT PREPARE（ONESELF）
 POWERI FORCE BLUE
POCKET
FOR．TO SLOWLY WHERE，WHITHER WHERE WHITHER
HEART

HEART 3NOT 8

픈
$\frac{\pi}{3}$

\qquad

 0000000000000 OOODOOMOOOOOOOOO

 000000月0000700000000000MHMOOOH $0000000000000000700000000-0000$

00000000000000000000000000 HOOO 0000 N00M0000000000000000000000

 HURRY，HASTEN
HURRY，HASTEN BLOW：STROKE，WOUND MACHINE MACHINE
SELL
ANGEL DICTIONARY，LEXICON
HURRY，HASTEN
HURRY，HASTEN
BED
NATER SALT
$-10 \quad M J I A N I$
$M A P$
$B E C A$
4
3
$\frac{1}{4}$
$\frac{1}{6}$

IND $H 10737 \geqq H 1$
$M コ 151 I$

$0 . \mathrm{JW}$ $43 H J W 31$
UJHJW31
$\frac{0}{0}$

I
$>$

14

0
3
$>$
\propto

0
ω
e
－
 000000000000000000 OOOOOOOOOO

 H－10OOHHODOOOOOOHOOOOOOOOHOOOO日
 OOルル上

10. FOOT A C ij $\quad V \quad U \quad S F X$ PERIOD

10

$\cdots \quad 2-\mathrm{A}=16$
ENGLISH EQUIV.
TELL PLAY (A !AUSICAL INSTRUMENT)
PLAY (MUSICAL INSTRUMENT) PLAY (MUSICAL INSTRUMENT) ARRIVE REACH TOUCH

응

 000000000000000000000000000000 OOOOOONOOOOOOMOOOOJOOONOOOOONO

 HHFHHHOOHHOOOOHOHOOHOOOOOOOOOH HONNHNOO 0.000000000000000000000

 $\ggg \ggg z z \gg z z z z>z>z z>\in z z z<z z z z>$

品

ENGLISH EQUIV．
 SAD ADVICE
$\begin{array}{r}4 \\ \hdashline \\ \hline 1 \\ \hline 1\end{array}$

 NEWSPAPER，JOURNAL． 300 ・ヨ1甘OI－111830
$\exists 80 W \cdot 1 \exists \lambda \cdot 77115$ $\underset{\text { 山 }}{\underset{\text { 山 }}{~}}$

ENGLISH EQUIV.

 OOCOOOCOOOOOOOCOOOOOOCOCOOOOHO OOOOMOOOMODOOOOOCMMDNOEOOOOOOO

口-

ENGLISH EQUIV．

YOUNG
NORTH
PLANT
PLACE NAME
HOSE，PIPE
STEP
CRY OUT，SHOUT，CALL ALOUD
YOUNG
NORTH
BIRD
NARROW
TROUBLE，INCONVENIENCE，MISFOR FASHION，WAY，FORM
HOARSE
NEEDING，MUST，NECESSARY
A1ISSJJJN वGJ N
COMMANDMENT，MORAL COMMAND，GOOD DEE
NOON
LAUGHTER，HUMOR，UNSERIOUS BUSINESS
DRAW
HOLY，SAINT，SACRED
BUY，ACQUIRE
OCCUR，HAPPEN
ACCEPT，RECEIVE，GET
岕

BE RECEIVED
FIX，FASTEN．

I
x
4
\backsim
D
$>$
\simeq
0
u
$<$
PROGRESS，GET ON
EARLY，PREMATURE
PISTOL
PUFLIC，AUDIEIUCE
SNALL．
LIGHT，EASY，SWIFT
SPOIL
FLOUR

$1 \exists 1$
A BIT E， ALL UPUN
OCCURRENCE，INCIDENT，CASE
CEILING
ICE
STRAW
LISTEN TO
LISTEN TO
HAFE，DIFFICULT，SEVERE
LIEN，KNOT，ATTACHMENT，MUTINY
TIE，FORM A LIEN
DIFFICULTY COLD
READ
CALL，
NEAR．
号
 1180 HS

 00000000000000000000 ODOODODOO $0000 \mathrm{MOOMOMOOOOOOOODOOOOOOON=00}$

 $000 \mathrm{HO} 00000000 \mathrm{H0} 000000000000 \mathrm{ODO}$

Ocs
TEMDER
WET
SOFT
TRAI
RIUE
CENT
BAD.
CENTER
BAU, EVIL
HUNGRY
NOISE
WET
SOFT, TENOER
TRAIN
RIUE
CENTER
BAU, EVIL
HUNGRY
NOISE
PHYSICIAN
PERSONAL NAME
WANT, WISH, DESIRE, LIKE
WANT, WISH, DESIRE, LIKE
SERIOUS
FLOOR
WILL, INTENT, WISH
ONLY, MERELY
OANCE
DANCE
PERMISSION
PERMIT, GIVE PERMISSION (TO)
LIST
IMPRESSIOH
WRITE COWN, NOTE, REGISTER
BE STARTLED, KECOIL
RUN
RUH
UNMAKRIED
WINE, SPIRIT, GHOST, DISPOSI ION
WIHD, SPIRIT, GHOST, DISPOSITION
BROAD, WIDE
号
NOI^{2} ISOdSIO

-250

ब由न

STREET
WIDTH
WASH, TAKE A BATH
WASH
DISTANCE
FAR AWAY REMOTE
SMELL, SCENT
QUESTION
BORROW
ASK
ASK
LEAVE
WEEK
CRISIS, BREAKDOWN
SABBATH. SATURDAY
ENDEAVOR. DO ONE S BEST
FIELD
PERSONAL NAME
FIELD
MISTAKE, ERROR
POLICEMAN
POLICE
LIE
TO HAVE SEXUAL INTERCOUR
JS\&חOJdヨLNI 7VחXヨS JAVH OL NEIGHBOR INTELLECT, MIND
 0
\sum_{-1}^{2}
$\frac{a}{\square}$
$\frac{1}{T}$
$\frac{1}{0}$
$\frac{1}{2}$

$\frac{1}{2}$ QUARTER | $\frac{1}{4}$ |
| :--- |
| $\frac{1}{0}$ |
| $\frac{9}{8}$ |
| 1. |

 I ك
x
L

 2545

ENGLISH EQUIV．

동
믕

옹
欲
 JUDGE文空岂
QUIET．
岂

NO．	HOOT	A	C	G	K	V	U	5	F	X		PERIOO

100000000000000000000000000000
MOOOOOOONOOOOOOONOOJOOOOONMOOO
न－
ココーココゴココココさゴざココきコココゴゴコゴコー
$00 N 000000000000000000020000000$ $2{ }^{56}$

ENELISH EQUIV.
MINISTER LOF STATE)
OFFICE, BUKEAU
POSITIOIN
RURNT
ROOT
SERVICE
SIX
SIXTH
DRINK
PARTICIPATE IN
AGAIN
ANSWER, GIVE BACK,
AISWER
RETURN
EQUAL, WORTH
NO(ONE)
MARKET, BAZAAR
LINF, ROW, SERIES
OX
POET
GAME, PLAY
PLAY (GAMES) WITH (SO
FLAY WITH (TOYS)
BLACK
GREY HAIR, OLO AGE
BELOIGIING
PUT
SONG, FOEM
SING
CONVERSATION

 00000000000000000000000000000

ENGLISH EQUIV.
FIT, BE SUITABLE FOR
FIG TREE
FIG
TEA
PROGRAM, PLAN, PROJECT
HANG
INDUSTRY, MANUFACTURE
SEIZE, CATCH, COMPREHEND, GRASP
SEW, TAILOR
ORANGE
REPAIR, CORRECT, AMEND
TRANSLATE
NINE
CANNON
THANKS
OUT OF, FROM WITHIN
LINE, ONE'S TURN, WAITING LIST
BEGIN
GEGIN,
UNDER, INSTEAD OF
FOLDER, FILE, BRIEF CASE
AND
CONFERENCE
DISCUSSION, ARGUMENT
COMMITTEE, COMMISSION
VETERAN, OF LONG STANLING
KIND, AMIABLE, LIKE
ROPE
PACKAGE, PARCEL
FRIEND
HANG
뭄
$\stackrel{y}{n}$
뭉

 LINE, ONE'S TURN, WAITING LIST | z |
| :--- |
| \vdots |
| \vdots | BEGIN,

UNDER, INSTEAD OF
FOLDER, FILE, BRIEF CASE
AND
CONFERENCE
DISCUSSION, ARGUMENT
COMMITTEE, COMMISSION
VETERAN, OF LONG STANLING
KIND, AMIABLE, LIKE
ROPE
PACKAGE, PARCEL
FRIEND

$$
\begin{aligned}
& \text { PACKAGE, PARCEL } \\
& \text { FRIEND }
\end{aligned}
$$

\qquad

 $0-00000000000000000000000000$ $06000000000000 \mathrm{r} 00000000 \mathrm{NmO0000}$

 THINK
IMPORTANT InOgY YNIH
DARKIESS
 －
 CAT岂号示
 ＝0000 $\mathrm{O}=00000000000000000000000$ 0000ROMOROOOOOOOMOOOONOOOOOOOO

 00000000000000000 HOONOOOOONO

 $\geq \ll \infty z z z z a z>z z z z z z \gg 4>z z>z z \ggg z$

THREAD，WIRE，STRING
SAND
HEAT，FEVER
HULE
FEELING，SENSE
LIVING：VIVID，ALIVE
TAILOR
SULDIER
LIFE
PERSONAL NAME
STRONG

COME BACK RESTORE，RETURN（SOMETHIMG） REPEAT

$$
\begin{aligned}
& \text { 安空 }
\end{aligned}
$$

$0000000 \subset 000000000000000000000$ ONNOOOOOOOOOOOOOMOONOOOOOOOOOO

 ○
 \＆$\quad \geq \geq \geq \geq \geq<\geq \geq \geq \geq a \ggg><\geq z>\geq \geq \geq \ggg \leq \geq \geq 0 \geq$

 Q

 259

EIIGLISH EQUIV.
MENTION
REMEMBE.K
FEMINL
CLASS
FORK
TIME.
INVITE, CALL TO COME,
OHCHESTRA
TAIL
OLD (OF AGE)
BEARD
BE OLD
FOREIGN
CURRENT, TRENL
THROW OFF, THROW AWAY
EAST, ORIENT
THIS
SUITCASE
PAIR, COUPLE
OLIVE

 0000000 HO 000000000000000000000

 000000 -1000~0M0000000000NR0H000 $00 \Sigma \Sigma 0 \Sigma 0 \mu \mu \Sigma 000 \mu \Sigma 0000000 \Sigma 0000 \mu 0 \mu$

 0000000000000000000 NOOOOOO 00 m

 $0000 \pm 000 N N O N O O O M O 0000000000000$

$$
\ggg \ggg z \geq \ggg>z \geq<\square \square \propto z z<4>z \geq z \alpha z z z
$$

EE MISSING，BE ABSEINT

云云云
ELIEVE

$$
-1-1-1<
$$ Nas

-														
	rio.	FHGLISH EQUIV.	ROOT	f.	C	G	R	V	U	5	F	X	H	PER100
		22	888											
		301E	OR9\%	1	1	F	0	0	4	1	1	2	0	1111
	93	BUUKLET, NUTEISOOK, P-P:PHLET	XRR*	\because	1	F	0	0	4	12	1	0	1	0011
	94	BUOR. LETTCR. SCRGLL	CPR*	M	1	, ${ }_{\text {a }}$	0	0	4	1	1	0	0	1111
	95	RORRO:	SAL*	V	4	0	5	1	1	13	1	0	0	1111
	96	BOTTLE	EQRO	N	1	M	0	0	4	41	1	0	0	1111
	97	boujoin, eeanjty silut	CLH*	M	1	M	0	0	4	3	1	0	0	0001
	c 9	BOK CASE	UPC*	H	1	F	0	0	4	4	1	0	0	0111
	99	Bor	YLD*	N	1	M	0	0	4	1	1	0	0	1111
${ }^{1} \mathrm{NO}$	100	BOY, YOUNGSTER	NDR*	11	1	M	0	0	4	1	1	0	0	1111
FO	101	BREAL	LXM*	N	1	M	0	0	4	1	1	0	0	1111
10	102	Bfing	BWA*	V	4	0	1	1	1	7	1	0	0	1111
	103	BRING IN PUT	KNC*	V	4	0	1	1	1	7	1	0	0	1111
	104	RRUAL WIDE	RXE*	A	1	0	0	0	4	1	1	0	0	1111
	105	BROUI, FLOOR 3FUSHi	MAAa	11	1	M	0	0	4	12	1	0	0	1111
	106	BROTHER .	AXY*	N	1	M	0	0	4	27	1	0	0	1111
	147	BrUSH	ORS*	$1:$	1	F	0	0	4	12	1	0	1	0001
	108	BU1LLE, COHSTRUCT	BiJH*	V	8	0	0	1	1	14	1	0	0	1111
	109	BuIllilior structlite	biNY*	\because	1	M	0	0	4	22	1	0	0	1111
	110	Burio.	BOR*	V	3	0	0	1	1	13	1	0	0	1110
	111	Buris	BOR*	V	2	0	0	1	1	13	1	0	0	1111
	112	BUizint	SRP*	A	1	0	0	0	4	3	1	0	0	1111
	113	BuSy	UCQ*	A	1	0	0	0	4	3	1	0	0	0111
	114	EuT	ABL*	C	8	0	0	0	7	1	1	0	0	1111
	115	EUTTER	XHA*	N	1	F	0	0	4	1	1	0	0	1111
	116	BUTTOA	KPTR	N	1	. M	0	0	4	+1	1	0	0	1111
	117	BUT, AATHER	ALA*	C	8	0	0	0	7	1	1	0	0	1111
	118	BU', ACQUIKE	QNH*	V	3	0	0	1	1	14	1	0	0	1111
	119	Calitir hoodei riut	\&RP*	N	1	M	0	0	4	2	1	0	0	0001
	120	CFLLL, CALL UPOiA	QRA*	V	5	0	1	1	1	13	1	0	0	1111

 $000000000-100000000000000000000$ MMOOOOOOOOOOOOMOOOOOO OOOOOOORO

 0000000000000000000 HO 000000000 000000000000000000000000000000 ェミさミさル

CAMP

 CERTIFICATE，DOCUMENT

 OHOHOOOOMOOOOOHHOHHOOOOOOHOOHO
 ル OU OLI

 beki phofulno -
 100000000000001000000000000000 00m000000000000m000m00000010 No

 00000000000н00000月000れ00000000

 SLX*
GRR*
URR*
MLN*
MWT*
GDL*
GSY*
WHL
YSR*
WK**
RXQ*
PRO*
AL**
WLR*
ULT*
CPQ*
LMQH
USH*
\&YYR
XLM*
LBS*
LBS*
SML*
STH*
IUHG*
YBS*
ABQ*
GWR*
AZN*
UDU*

EHGLISH EGUIV.

\square

$0000000000-1000000000000000000$ OONOOOきOOOONOOOOOOODOOOOMONOOO

 $\propto 0000000000000000000000000 \mathrm{H0000}$

NO．ENGLISH EQUIV．

 ฯ \quad ¢

 0 (T)

$$
{\underset{2-A-46}{ } 90^{\circ}}^{2}
$$

 000000000300000000006000000000 000000 NOOOOONOOOMOMOMOOOOOOOMm

 OHOOHOOOOOOOOOOODHOOOODOOOOOOO 0000 in 0000000000000040000000才00山оइミOル

 I OOOODOOOOOOOOOHOOOOHOOOOOOOOOH M0000000000000000000000祭00000

 0000 OHनHOOHनHAOHAOOOOOOOOOOOOO

	COMPU	UTERIZED ENGLISH TO HEEREY ICTIO											
	NO.	ENGLISH EQUIVe.	ROOT	A	C	G	R	V	$\cup S$	F	X	H	PERIOD
	361	GRATUITOUSLY. FREELY	XNM*	D	3	0	0	0	45	1	7	0	1111
	362	GREEI:	YRQ*	A	1	0	0	0	43	1	0	0	1111
	363	GREETING REGARDS, BLESSING	BRK*	N	1	F	0	0	41	1	0	0	1111
	364	GREET	BRK*	V	3	0	0	1	14	1	0	0	1111
	365	GREY HAIR, OLD AGE	SYB*	N	1	F	0	0	41	1	0	0	1111
	366	GROCERY STORE	KWL*	N	1	F	0	0	412	1	8	1	1111
	367	GROVE	XRS*	N	1	F	0	0	44	1	0	0	0001
i	368	GUARD'S WATCH. POST	SMR*	N	1	M	0	0	412	1	3	0	1111
	369	GUARD'S WATCH. POST	SMR*	N	1	M	0	0	412	1	0	0	1111
$\begin{aligned} & N \\ & 1 \\ & p \end{aligned}$	370	GUARD. KEEP	SMR*	V	5	0	7	1	112	1	0	0	1111
	371	HAIR	SOR*	N	1	M	0	0	41	1	7	0	1111
04	372	HAMMER	PAS*	N	1	M	0	0	42	1	0	0	1111
	373	HAND IN, TURM OVER TRANSMIT	MCR*	V	4	0	1	1	114	1	0	0	0111
	$374{ }^{\circ}$	HAIND	YD**	N	1	F	0	0	41	1	12	0	1111
	375	HANDBAG, PURSE, BILLFOLD. COINHO	ARNQ	N	1	M	0	0	47	1	0	0	0001
	376	HANDKERICHIEF	MXR*	N	1	F	0	0	412	1	0	0	0001
	377	HANG	TLH*	V	3	0	0	1	114	1	0	0	1111
	378	HAPPY	AWSR	A	1	0	0	0	412	1	0	0	0111
	379	HAPPY	SMX*	A	1	0	0	0	41	1	0	0	1111
	380	HARBOR, PORT	NML*	N	1	M	0	0	41	1	0	0	0111
	381	HARD, DIFFICULT, SEVERE	QSH*	A	1	0	0	0	41	1	0	0	1111
	382	HATE	SNA*	V	3	0	0	1	113	1	0	0	1111
	383	$H E$	HWA*	R	2	M	0	0	51	1	0	0	1111
	384	HEAD, CHIEF, TOP	RAS**	N	1	M	0	0	435	1	0	0	1111
	385	HEAR	SMO*	V	3	0	0	1	113	1	0	0	1111
	386	HEART	LB**	N	1	M	0	0	41	1	3	0	1111
	387	HEART	LB**	N	1	M	0	0	428	1	0	0	1111
	388	HEAT. FEVER	XWM*	N	1	M	0	0	41	1	7	0	0111
	389	HEAVEN. SKY	SM**	N	1	N	0	0	41	1	11	0	1111
	390	HEAVI. WEIGHTY .	KBO*	A	1	0	0	0	41	1	0	0	1111

 1 ル

 HOLIEY RESHECT

 000000000000000000000000000000 COOOOOONOOOOOOOOOOOOOOONNONOOO 00नH000000000000000000न000000月 1. 00000000000000000 HMOOOHOONOOO

421	HUNDRED
422	HUNGRY
423	HURRİ, HASTEN
424	HURRY, HASTEN
425	HUSBAND, OWNER
426	I
427	I
428	ICE
429	IF
430	IF, WHETHER
431	ILL
432	IMAGE, PICTURE
433	IMMEDIATELY, AT ONCE
434	IMPORTANT
435	IMPRESSION .
436	IMPRISONED
437	IN ORDER
438	IN PAYMENT OF, FOR, THROUGH
439	IN VIEW OF, BECAUSE OF.
440	INDIVIDUAL, PERSONAL PRIVATE
441	INDUSTRY, MANUFACTURE
442	INFORMATION, NEWS, MESSAGE
443	INFORM
444	INK
445	INK
446	INSIDE OF, WITHIN
447	INSIDE, INTERINAL AFFAIRS
448	INSTRUMENT, TOOL, UTENSIL
449	INTELLECT, MIND
450	INVITE, CALL TO COME'.ORDER

275

 I OOOOOOOOOOOOOOOOOOOOOOOOOOOOOM

 HOOHनOHOHOOOOOHHOOOOOOOOHOHOOD

511	LIVE AT
512	LIVIHG, VIWIU, ALIVE
513	LONO
514	LOUR AT
515	LOSE
516	LOT. PLOT (OF LANJ)
517	LOVE TO-=, LIKE TO-
518	LOVE, AMOUR
519	LOVE, LIKE
520	LOW
521	LUCK
522	LUCK, PLANET, FATE
523	MACHINE
524	MAJURITY MOST
525	HAKE ANGRY, EMKAGE, Arr:OY
526	MAKE USE OF, USE
527	WAAV* PERSOL
528	MARKET, BAZAAR
529	MAFRRIED
530	MASTER, SIR NISTER
531	MATCH
532	MATTER, AFFALR
533	MEASUFE
534	MEAT
535	MEET
536	MEWIOPY, COMNENURATIUN
537	WEWTION
538	MERCHANDISE
539	MEİCHANT: UEALER
540	NETAL

 000000000 HFO 000000000000000000 0000000 OOOOO 000000000 OOOOOOMOO

	NO.	ENGLISH EOUIV.	ROOT	A	C	G	H	V	U	S	F	x	H	PERIOD	
	571	MATURE	190*	1	1	M	0	0	4	1	1	0	C	1111	
	572	NEAR, Close relotelo relative	QRE*	A	1	0	0	0	4	3	1	0	0	1111	
	573	NECESSARY, FEOUIFED	NXA*	A	1	0	0	0	4	3	1	0	0	11.1	
	574	HECK.	WNAR	1.	1	M	0	0	4	1	1	0	0	1111	
	575	NEEUING, MUST, $H E C E S S A R Y$	\&RK*	A	1	0	0	0	4	2	1	0	0	0111	
	576	NEEDLE	$\mathrm{N} \times \text { O }$	11	1	M	0	0	14	1	1	0	0	0111	
	577	NEEO, NECESSITY	\&RK*	N	1	M	0	0	4	4	1	0	0	0111	
"."	578	NELGHBOR	SKN*	N	1	M	0	0	4	1	1	0	0	1111	
	579	NEIGHBORING	SKN*	A	1	0	0	0	4	1	1	0	0	1111	
$\begin{aligned} & N \\ & 1 \\ & \$ \end{aligned}$	580	NEWS	XDS*	il	1	F	0	0	4	1	1	0	0	1111	
r	581	NENSPAPER, ЈOURINAL	OTN*	1	1	M	0	0	4	6	1	0	0	0001	
u^{n}	582	IEW: FRESH	X05*	A	1	0	0	0	4	1	1	0	0	1111	
$\mathbf{n a n}^{-3 / 2}$	533	NICE, PRETTY	XMD*	A	1	0	0	0	4	18	1	0	0	0011	
	584	NICE, FINE	YPH*	A	1	0	0	0	4	1	1	0	0	1111	
0^{+}	585	WIGHT	LYL*	N	1	F	0	0	4	1	1	0	0	1111	
	586	NINE	TSO*	B	3	F	0	0	4	1	1	0	0	1111	
	587	NOISE	ROS*	N	1	M	0	0	4	1	1	0	0	1111	
	588	NOON	WWHR	11	1	M	0	0	4	1	1	11	0	1111	
	489	MORTHI	\&PN*	1	1	M	0	0	4	3	1	7	0	1111	
	590	NOSE	AP**	N	1	M	0	0	4	1	1	9	0	1111	
	591	NOSTKIL	\\|XR*	N	1	M	0	0	4	2	1	14	0	0111	
	592	WOTEDOOK	PIJQC	N	1	M	0	0	4	1	1	0	0	0111	
	593	$\mathrm{NOm}_{\mathrm{m}}$	OKSH	0	1	0	0	0	4	42	1	0	0	0111	
	594	NOP HUT	LWA*	L	1	0	0	0	7	1	1	0	0	1111	
	595	$110(0, E)$	SWM*	$1!$	1	0	0	0	4	4	1	0	0	0111	
	596	NUMBER	CPR*	N	1	M	0	0	4	12	1	0	0	1111	
-	597	OHJECT	O8M*	N	1	M	0	0	4	1	1	0	0	1111	
	598	OCCUR, HAPHEA	QRH*	V	2	0	0	1	1	14	1	0	0	1111	
	599	SCCURRENCE, IVICIDEHT, ASE	QRH*	11	1	M	0	0	4	12	1	0	0	1111	
	000	OF CUURSE	KM3N	C	3	0	0	0	4	3	1	0	0	0011	

 000000000007000000000000000000 000ONOOOOMOOOOORNONOOOONOOROO

 HEOHOOHOOOOOHOOOOOOOOOOOOOOOOO

 м $-\boldsymbol{\sim}$ ппन

$$
2-A-58
$$ $00000000000 \mathrm{H000000000000000000}$ 000000000 mOO 000000 mOOOO 000000

 000000000000 नHनN一10000000000000 $0000000000000 \mathrm{NNWNOOO=000000000}$

283

I $00000000 \mathrm{ODOOOOOOOOOOOO10000000}$ OOMOOOOOOOONOOOOOOOOOONOOOOOOO

 OOOHनOCHOOOOOOOHHOOOOOOOOHOOOO 000000000000000100000000000000

$$
\operatorname{tgS}_{2-A-60}^{284}
$$

 $000000000000000000000 \mathrm{OH}+0000000$ 000000000000000000000000 OMMOOO

 HOHONNOOOOOOOHOOONOOOOOHNOOOOO 0000000 O O
 $\ggg \ggg>z<z>z z \ggg *<>z \ll z z \gg z z z z z$

COMF	JTENLZEU EHGLISH TO HEBME	SICTIO												
NO.	EIVGLISH EOUIV.		ROOT	\wedge	C	G	H	V	U	S	F	x	H	PERIOD
751	NOPE		XBL*	N	1	M	0	1	4	1	1	0	0	1111
752	ROUNL AEOUT AnOU:ji		CBP*	D	2	0	0	0	4	2	1	0	0	1111
753	HOURE		OGL*	A	1	0	0	0	4	3	1	0	0	1111
754	RUl*		RWR*	V	5	0	6	1	1	14	1.	0	0	1111
755	RUs		KWR**	V	5	0	12	1	1	14	1	0	0	1111
756	Sajüthe Shtuiday		57T*	N	1	F	0	0	4	1	1	0	1	1111
757	SAO		O8B*	A	1	0	0	0	4	3	1	0	0	1111
758	SALT		MiLX*	N	1	M	0	0	4	1	1	0	0	1111
759	SMAD		XWL*	N	1	M	0	0	4	1	1	3	0	1111
760	SAVE (FROM A EAINCEIX)		N\&L*	V	3	0	0	1	1	7	1	0	0	1111
761	SAY		AMR*	V	7	0	0	1	1	13	1	0	0	1111
762	SCIENCE, KloNLEDGE		MDO*	N	1	M	0	0	4	1	1	0	0	1111
763	SEA		YM**	N	1	M	0	0	4	1	1	0	0	1111
764	SEAL		XTM*	V	3	0	0	1	1	14	1	0	0	1111
745	SECCND		SN**	A	1	0	0	0	4	2	1	0	0	1111
766	SECRET		CWD*	H	1	M	0	0	4	1	1	3	0	1111
767	SEE		RAH*	V	3	0	0	1	1	24	1	0	0	1111
768	SEEK. LOOK FOR		XPS*	V	3	0	0	1	1	4	1	0	0	1111
769	SE12F. CATLTI CORFRLPIE: J.	GR, SP	TPC*	V	3	0	0	1	1	14	1	0	0	0111
770	SELL		NKKR*	Y	4	0	1	1	1	14	1	0	0	1111
771	SEIN		SLX*	V	4	0	1	1	1	13	1	0	0	1111
772	SENTENCE, TRIAL, CASE		SP風*	M	1	M	0	0	4	12	1	0	0	1111
773	SERICUS		RRNY	A	1	0	0	0	4	2	1	0	0	0011
774	SERVICE		SRT*	N	1	M	0	0	4	6	1	0	0	1111
775	SEW , TAILOK		TPR*	V	3	0	0	1	1	14	1	0	0	1111
776	SHE		HYA*	R	2	F	0	0	5	1	1	0	0	1111
777	SHEET IOF WRITING PAPEEI		DP**	N	1	M	0	0	4	1	1	0	0	0111
778	SHEET METAL, CAIV		PX**	N	1	M	0	0	4	1	1	0	0	1111
779	SHIP, VESSEL		ANY*	1	1	F	0	0	4	4	1	0	0	1111
760	SHUE		NOL*	N	1	F	0	0	4	1	1	12	0	1111

 H00-1000000000000-10000000000000 20000000000ONOOOOOOO0000OMNOOO

 OOHOOHनOOनOOOOOHOOOOOOHOOOOHOO ○OHOOOOOONOOOOOOOOOOOQOOOOOOOO

 $z<>z z \gg z z>z z z \ll>z z \infty<z z>0 a z z>z z$

[^13] 000004000000000000000000000000 OJOOOOOOONONOOOONOOOOOOOMODOOO
 ル \quad NHFNH

 \propto

ε

$58 \mathrm{~S}_{2} 288$
 000000000000000000000000000000 000M00000OROOOMONOOOOMMOOOOOOO

 $z z=z \gg<>0>z z z=z z z<z<z z z z \ggg \gg z$

[^14] ○○OOHनOHOHOOOOOOOOOOOOOOHनHनHO 000000000000000000000000 O 0000 O 000

\cdots

 OOOONOOOOOOONOOOOOOOOOOOOOOO

CCMFUTENI2ED EWGLISH TO HETAEV DICTIOIARY
NO. EMGLISH ENUIV.

THE OHSECT PARTICLE
THE TOPIC
TEXTILE MATERIML, FÄOR, C, LIGN
THANH
THAT, WHICH
TERRIBLE
TEACI
TEACIER
TEACHER
TEAKETTLE
TEASPOON
TELL
TEACI
TEACIIER
TEACHER
TEAKETTL
TEASPOON
TELL

TEINSION
TEITT
NOILO: ILMOD 7ヨxI+ JnC $\times \forall 1$

 -

 $000000000000000000000 \mathrm{H0000000H}$ 000000000000000020000000 molovi 0

No.	ENGLISH ERUIV.	R00T	A	C	G	R	V	U	S	F	X	H	PERIOD
1021	WORK. SERVE	UBD*	V	3	0	0	1	1	14	1	0	0	1111
1022	WORTHY, DESERVIING	NDAY	\wedge	1	0	0	0	4	1	1	0	0	0111
1023	WCRTHY, DESERVIIVG	KDAY	[4	0	0	0	4	1	1	0	0	0111
1024	WOUNL, INJURY	P\&0*	N	1	M	0	0	4	\pm	1	0	0	1111
1025	WRITER, REPORTER	CPR*	N	1	M	0	0	4	4	1	0	0	1111
1026	WRITE	KTB*	V	3	0	0	1	1	14	1	0	0	1111
1027	WRITE DOWH, WOTE, REGISTEF	HSM*	V	3	0	0	1	1	14	i	0	0	1111
1028	(A) GLASS	KWC*	N	1	F	0	0	4	1	1	0	0	1111
1029	YEAT	SN**	N	1	F	0	0	4	1	1	0	0	1111
1030	YELLCW	\&HB*	Λ	1	0	0	0	4	3	1	0	0	1111
1031	YES	KN**	D	3	G	0	0	4	1	1	0	0	1111
1032	YESTERDAY	ATML	D	1	M	0	0	4	8	1	0	0	1111
1033	YOU (ONE FEMALE)	AT**	P.	2	F	0	0	5	1	1	0	1	1111
1034	YOU (ONE MALE)	ATH*	R	2	M	0	0	5	1	1	0	0	1111
1035	YOU (MALES)	ATM*	R	2	M	0	0	5	1	1	0	0	1111
1036	YOU (FEMALES)	ATN*	R	2	F	0	0	5	1	1	0	0	1111
1037	YOUNG MAN: BOY; GUY	BXR*	N	1	M	0	0	4	3	1	0	0	1111
1038	YUUNG LADY, GIKL	BXR*	N	1	F	0	0	4	3	1	0	0	1111
1039	YOUNG	8012*	A	1	0	0	0	4	2	1	0	0	1111
1040	(PAVED) ROAD	KRS*	N	1	M	0	0	4	2	1	0	0	0001

[^0]: ABSTRACT
 The second part of the four-part report of research on the development of a computerized, phrase-structure grammar of modern Hebrew describes the application of a generalized complex-constituent-phrase structure grammar to modern Hebrew. This volume discusses the details of the grammar: limitations, input and output, symbols, rules, tree diagrams, word classification, syntax, and orthography. An appendix provides a Hebren-English dictionary. The grammar presented here provides new material for teacher training in the form of a transformational-type, theoretical model of modern Hebrew that vieus the language as an integrated whole. By studying the language this way, teachers of Hebrew can acquire a better understanding of the deep structure of the language. The formal presentation of the grammar, however, may not be the best form for training teachers. For related reports see PL 002 627. FL 002 629, and FL 002630. (Author/VM)

[^1]: ${ }^{1}$ The material in Pari II is based on Chapter IV of J. Price's The Development of a Theoretical Basis for Machine Aids for Trans Zation from Hebrew to EngZish, a Ph.D. dissertation swimitted to Dropsie University (1969). Extensive revisions have been made as a result of the research and computer tests conducted on this project.

[^2]: ${ }^{2}$ The acient Hebrew grammaxians, being concerned chiefly with questions of phonology and morphology, made comparatively slight reference to matters of syntax. Even M.Z. Segai in the Gromman of Mishnaic Hebrew does not consider the fact that syntax should go beyond the bounds of a sentence. The first explicit inquiry into this question seems to be the work of Z.S. Harris in "Discourse Analysis", Language Vol. 28, 2952, pp. 1-30; 474-494, and in his more recent series Discourse Analysis Reprints, Mouton, The Hague, 1963. U. Ornan in his dissertation The Nominal Phrase in Modern Hebrew, 1965, conesders some of these problems for Hebrew.
 ${ }^{3}$ See U. Ornan's chapter on the articie in his The Nominat Phrase in Modern Hebrew, 1965.
 ${ }^{4}$ For a discussion of surface structure and deep structure in language see Noam Chomsky's Syntactic Structures, Mouton, The Hague, 1957, see also Section 1.4 of Part I of this report.
 ${ }^{5}$ Examples of syntactic idioms would be the idlom for age (RN + number (+ SNH)), the idjom for time, money, date, and so forth.

[^3]: ${ }^{8}$ The generalized grammar lists 29 subscripts. Subscript w actually is 4, w_{1}, w_{2}, w_{3}, and w_{4}; other aubscripts that serve bookkeeping functions are not treated in thie section.

 9Actually there are only 76 rules. The 179 accounts for the optional variants of these rules.

[^4]: ${ }^{13}$ Note that the classification of MS and LKS as adverbs is arbitrary. Others classify them as conjunctions.

[^5]: ${ }^{16}$ Research in semantic classification will result in a more complex descriptor syefem for nouns.

[^6]: 24. See Section 2,2.2.4, footnote 10.
[^7]: ${ }^{32}$ The alternate construction YLD $\mathrm{ZH}-$ - this boy, is not included in the grammar as yet.

[^8]: 34 The rules on the regular noun phrase should include the syntax of qualifiers such as "all," "some," etc.

[^9]: ${ }^{35}$ There is some question that the prepositional phrase (Z) should be included in X_{p} in all cases. Further study is required.

[^10]:

[^11]:
 $H H$ 会 H HHP

 (HHHHHHHFHHHHHHHMHHHHHHHHHHHFHHHHHHHHHHHHHHHHHH

[^12]: RESULTANT HFQREW EENTENCE-

[^13]:

[^14]:

